Jacques Woillez

Systèmes diphasiques

Eléments fondamentaux et applications industrielles

Jacques Woillez

Systèmes diphasiques

Éléments fondamentaux et applications industrielles

Chez le même éditeur

Modélisation des écoulements multiphasiques turbulents hors d'équilibre R. Borghi, F. Anselmet, 2014

Topologie des écoulements tridimensionnels décollés J. Délery, 2013

Écoulements et réactions chimiques 1 : Équations générales R. Prud'Homme, 2012

Écoulements et réactions chimiques 2 : Applications aux mélanges homogènes réactifs R. Prud'Homme, 2013

Direction éditoriale : Emmanuel Leclerc Édition : Céline Poiteaux Fabrication : Estelle Perez Couverture : Isabelle Godenèche

Composition: Nord-Compo, Villeneuve d'Ascq

© 2014, Lavoisier, Paris ISBN: 978-2-7462-9633-6

Avant-propos

Des mots tels que « mécanique des fluides polyphasiques » ou « écoulements diphasiques » évoquent la plupart du temps dans le monde industriel les écoulements constitués de mélanges de gaz et de liquides tels qu'on les rencontre dans les conduites de transport des installations de production pétrolières ou dans les circuits de refroidissement des centrales nucléaires. Ces écoulements sont le siège de phénomènes complexes dont certains peuvent s'avérer dangereux pour les installations, aussi ont-ils fait l'objet de nombreuses recherches théoriques et expérimentales dont les résultats alimentent en permanence les outils de simulations numériques. Les résultats doivent toutefois être interprétés avec beaucoup de prudence, la maîtrise de tels écoulements étant bien souvent l'affaire de spécialistes qui interviennent dans les centres de recherches. À bien y regarder, très peu de littérature généraliste – du moins en langue française – aborde cette question au-delà des publications de recherches focalisées sur des problématiques bien particulières.

Pourtant les écoulements diphasiques sont présents partout dans la vie courante. Dans la nature tout d'abord : un nuage d'orage constitue un réacteur triphasique très complexe, une cascade produit des écoulements liquide/gaz de diverses sortes. Mais c'est surtout dans le domaine des procédés énergétiques et industriels qu'ils sont exploités intensivement. Dès lors que deux phases non miscibles – gazeuse, liquide ou solide – coexistent, on se trouve en présence du caractère diphasique de l'écoulement ou du système. On peut ainsi proposer la classification suivante :

Phase dispersée Phase majoritaire	Gaz (G)	Liquide (L)	Solide (S)
Gaz (G)	Mélanges (monophasiques)	Diphasique G/L Gouttes, films	Suspensions G/S Particules
Liquide (L)	Diphasique L/G Bulles, poches	Emulsions et suspensions L/L	Suspensions L/S Particules
Solide (S)		poreux uidisés	

Cette classification fixe le cadre de cet ouvrage, qui a pour ambition de traiter de ces écoulements diphasiques au sens large (on remarquera toutefois que certains domaines particuliers comme celui de mousses ou des fluides à comportement non newtonien ne seront pas abordés). Un tel objectif peut sembler trop ambitieux, voir présomptueux. Les écoulements diphasiques sont réputés à juste titre être instables et difficilement abordables par la théorie. Mais est-ce une raison suffisante pour laisser désemparé l'opérateur qui doit exploiter au quotidien des procédés qui sont le siège de tels écoulements alors qu'ils sont inaccessibles à la visualisation ou à la

mesure introspective du fait des pressions et des températures élevées qui sont établies? Car dans certaines circonstances d'exploitation, il sera urgent de réagir face à une dérive des performances, à une surconsommation d'énergie, où à une directive réglementaire demandant de dépasser ou de réduire les performances prévues. Dans ces cas-là, une information sur les phénomènes physiques de base et sur les mécanismes internes de fonctionnement seront d'un grand secours pour motiver des décisions immédiates ou pour anticiper sur les résultats d'essais ou de calculs pour lesquels il faudra attendre plusieurs mois avant d'obtenir les conclusions. Les écoulements diphasiques sont mis en œuvre pour des applications bien déterminées : transport de matière, transfert de masse d'une phase vers l'autre, transferts de chaleur, fabrication de mélanges homogènes, séparation et classification de produits. Dans toutes ces applications particulières, il est possible et légitime d'effectuer des hypothèses simplificatrices qui permettent de sélectionner les mécanismes physiques prédominants, et en conséquence de proposer une modélisation heuristique qui permettra de donner des tendances de comportement et des ordres de grandeur des performances escomptées. C'est la recherche de ces tendances de comportement et le calcul des ordres de grandeur si utiles à l'ingénieur qui constituent la trame des chapitres proposés.

Le premier chapitre reprend l'essentiel des lois des écoulements monophasiques, puisqu'un écoulement diphasique est avant tout une juxtaposition de deux écoulements monophasiques, chaque phase obéissant aux mêmes lois. Le chapitre 2 rassemble les éléments descriptifs et de calcul des systèmes diphasiques proprement dits. Le chapitre 3 passe en revue les principaux procédés industriels qui ont recours à l'utilisation de ces écoulements, en proposant pour chaque cas des éléments fondamentaux permettant une estimation prédictive des performances et des consommations d'énergie. Enfin, le chapitre 4 résume quelques phénomènes particuliers que l'on rencontre peu fréquemment mais qui peuvent néanmoins expliquer de nombreux dysfonctionnements de circuits diphasiques.

L'ouvrage ne constitue pas une référence académique. L'auteur est conscient du risque qu'il court à décevoir le chercheur qui s'attendrait à trouver un état de l'art sur la question, ou à choquer le physicien par la simplification excessive des problématiques. Les spécialistes ou les constructeurs d'équipements industriels seront également déçus du manque d'exhaustivité de la présentation technologique des procédés, puisque seuls les principes de base du fonctionnement sont analysés. Néanmoins tous les non-spécialistes confrontés à la mise en œuvre ou à la compréhension des écoulements diphasiques – étudiants ou jeunes professionnels exploitants d'installations – trouveront ici une utile introduction qui leur permettra d'optimiser les procédés, d'acquérir les bases qui leur permettront d'aborder des ouvrages plus spécialisés et d'être alertés sur certains aspects concrets d'exploitation qui ressortent de l'expérience professionnelle de l'auteur.

Vouloir rédiger un ouvrage à but à la fois didactique et opérationnel constituait en quelque sorte une gageure. Je remercie à ce titre toutes les personnes, amis ou collègues, qui m'ont apporté leur éclairage sur tel ou tel aspect des sujets abordés, et particulièrement le Professeur Alain Liné de l'INSA-Toulouse pour sa relecture attentive et bienveillante! Je remercie également la société SETEC pour m'avoir encouragé à poursuivre cette entreprise malgré les urgences du quotidien, et encore ma famille pour son soutien indéfectible face aux aléas de la rédaction.

Table des matières

Avant-propos	III
Sigles et abréviations	XI
Chapitre 1	
Mécanique des fluides : « le minimum vital »	
1. Équations du mouvement	1
1.1. Champ des vitesses	1
1.2. Pression	2
1.3. Conservation de la masse	3
1.4. Équation des quantités de mouvement	5
2. Équation de Bernoulli	9
2.1. Cas des fluides parfaits incompressibles	9
2.2. Cas des fluides visqueux	11
2.3. Écoulements vortex	13
3. Pertes de charge	15
3.1. Écoulement en conduite rectiligne longue	16
3.2. Singularités et obstacles	17
3.3. Milieux poreux (Loi de Darcy)	21
4. Turbulence	22
4.1. Description	22

4.2. Grandeurs descriptives	24
4.3. Viscosité turbulente	27
4.4. Diffusion turbulente	29
5. Coefficients d'échange de chaleur	32
6. Thermodynamique	36
6.1. Définitions et équations d'état	36
6.2. Premier principe	37
6.3. Deuxième principe	38
6.4. Transformation adiabatique	39
6.5. Pression partielle	40
6.6. Puissance des machines tournantes	40
7. Écoulements compressibles	44
7.1. Équations du mouvement	44
7.2. Régime critique et blocage du débit	45
7.3. Limite de comportement incompressible	47
Chapitre 2	
Systèmes diphasiques	
Cyclemics dipridoiques	
1. Grandeurs caractéristiques	50
1.1. Taux de vide et glissement	50
1.2. Diamètres moyens	56
1.3. Surface d'échange	58
2. Modes d'apparition des écoulements diphasiques	59
2.1. Injections-mélanges	59

2.2. Ébullition-condensation	61
2.3. Évaporation-condensation de l'air humide	69
2.4. Dégazage	73
2.5. Cavitation	75
2.6. Distillation	78
2.7. Précipitation	80
2.8. Fermentation	82
3. Écoulements en conduites	82
3.1. Conservation du débit	83
3.2. Équation des quantités de mouvement	83
3.3. Pertes de charge	84
4. Mécanique des suspensions	86
4.1. Loi de Stokes	87
4.2. Temps de réponse	91
4.3. Sédimentation en conduite	94
4.4. Trajectoire d'une particule	96
4.5. Fractionnement	97
4.6. Coalescence	101
4.7. Bilans de population	105
5. Transferts de masse	106
6. Similitude	109
6.1. Intérêt des essais en similitude	109
6.2. Retour sur les écoulements monophasiques	110
6.3. Application aux écoulements diphasiques	113
7. Et la simulation numérique ?	116

Chapitre 3

Applications

1. Production d'énergie	121
1.1. Mise en œuvre du cycle de Rankine	121
1.2. Équipements diphasiques	128
2. Agitation et mélange	137
2.1. Généralités sur les cuves agitées	138
2.2. Mise en suspension de solides	141
2.3. Émulsification	142
2.4. Réacteurs gaz/liquides	143
2.5. Mélangeurs en ligne	146
2.6. Mélangeurs à rotor stator	148
2.7. Éjecteurs gaz/liquide	149
2.8. Éjecteurs solides/gaz et transport pneumatique	151
3. Séparation de phases	155
3.1. Décantation	155
3.2. Décantation lamellaire	157
3.3. Cyclonage	160
3.4. Centrifugation	166
3.5. Venturis dépoussiéreurs	172
3.6. Flottation	177
3.7. Classification	179
3.8. Dévésiculage	181
3.9. Filtration	184
3.10. Électrofiltration	187

4. Pulvérisations	188
4.1. Types de pulvérisateurs	188
4.2. Lavage d'un gaz	192
4.3. Refroidissement contrôlé d'un gaz	195
4.4. Éjecteur liquide/gaz	198
Chapitre 4	
Phénomènes particuliers	
1. Effet Marangoni	201
2. Effet « tasse de thé »	203
3. Jets rentrants	204
4. Coups de bélier	207
4.1. Coups de bélier hydrauliques	207
4.2. Coups de bélier thermiques	212
5. Vitesse du son	213
6. Pompage diphasique	213
7. Fluidisation	218
Bibliographie	221
Index	227

Sigles et abréviations

Α	Aire, surface, surface d'échange ou section de passage (m²)
A_b	Section frontale balayée par une goutte ou une bulle sur son passage (m²)
A _c	Section de passage contractée (m²)
a	Vitesse du son (m.s ⁻¹)
a	Section frontale d'un obstacle à l'écoulement (m²)
$\mathbf{a}_{_{\mathrm{c}}}$	Vitesse du son au col (m.s ⁻¹)
a_s	Aire de contact de deux bulles ou gouttes (m²)
С	Concentration massique d'une espèce ou d'un produit dans un fluide $(kg.m^{-3})$
C'	Fluctuation turbulente autour d'une valeur moyenne de la concentration massique (kg.m $^{\text{-}3}$)
$C_{_{\mu}}$	Coefficient de frottement d'origine visqueuse (-)
C_p	Capacité calorifique à pression constante (J.kg ⁻¹ .K ⁻¹)
C_v	Capacité calorifique à volume constante (J.kg ⁻¹ .K ⁻¹)
C_x	Coefficient de traînée d'un obstacle dans l'écoulement (-)
C_d	Coefficient de traînée d'une goutte, bulle ou particule de diamètre d (-)
С	Concentration molaire d'une espèce ou d'un produit dans un fluide (mol.m ⁻³)
С	Vitesse de propagation d'une onde de pression dans une conduite (m.s ⁻¹)
D	Diamètre, ou échelle géométrique caractéristique (m)
D_{c}	Diamètre d'une cheminée d'alimentation d'un décanteur cylindrique (m)
D_{H}	Diamètre hydraulique (m)
D_x	Diffusivité moléculaire d'un composé ou espèce X dans un fluide (m².s-¹)
D_{T}	Diffusivité turbulente d'un composé ou espèce X dans un fluide (m².s-1)
d	Diamètre d'une bulle, goutte ou particule en suspension dans un fluide (m)
d_c	Diamètre de coupure d'un équipement de séparation (m)
d_{max}	Diamètre maximal d'une population de bulles, gouttes ou particules (m)
$d_{\scriptscriptstylemin}$	Diamètre minimal d'une population de bulles, gouttes ou particules (m)
d ₅₀	Diamètre moyen d'une population de bulle, goutte ou particule tel que 50 % vol ont un diamètre supérieur à $\rm d_{50}$ et 50 % un diamètre inférieur à $\rm d_{50}$ (m)

d ₃₂	Diamètre moyen de Sauter d'une population de bulle, goutte ou particule (m)
E	Energie interne spécifique (J.kg ⁻¹)
E _m	Energie mécanique totale par unité de masse d'un fluide en mouvement $(J.kg^{-1})$
ΔE_{μ}	Perte d'énergie mécanique par viscosité (J.kg ⁻¹)
е	Espacement (m)
F	Force (N)
F	Ratio de soutirage d'un cyclone (-)
F_{μ}	Force d'origine visqueuse ou traı̂né visqueuse d'une bulle, goutte ou particule (N)
f	Fonction
$\mathbf{f}_{\mathtt{c}}$	Fréquence de collision (s ⁻¹)
\boldsymbol{f}_{μ}	Force d'origine visqueuse par unité de volume de fluide (N.m ⁻³)
F_{g}	Force de pesanteur (N)
F_{p}	Forces dues à la pression
F_{L}	Coefficient de frottement de Durand-Condolios (-)
\mathbf{F}_{T}	Force de contact d'origine turbulente (N)
g	Accélération de la pesanteur (m.s ⁻²)
Н	Enthalpie spécifique (J.kg ⁻¹)
HR	Humidité relative (-)
$\mathbf{H}_{\mathrm{sat}}$	Enthalpie spécifique de l'air humide saturé (J.kg ⁻¹)
h	Hauteur (m)
h	Enthalpie spécifique intermédiaire (J.kg ⁻¹)
h	Épaisseur de rupture du film de coalescence (m)
ħ	Coefficient de transfert de la chaleur (W.m-².K-¹)
I	Taux de turbulence (-)
K	Perméabilité d'un milieu poreux (m²)
K	Coefficient de transfert massique (m.s ⁻¹)
\mathbf{K}_{d}	Coefficient de diffusion adimensionnel d'une population de diamètre moyen d dans une conduite $(-)$
\mathbf{K}_{H}	Constante de Henry d'un gaz (mol.L-1.Pa-1)
\mathbf{K}_{p}	Coefficient entrant dans le calcul de l'efficacité de collision (-)
K_s	Produit de solubilité (mol².L·²)
\mathbf{K}_{T}	Coefficient de transfert molaire (mol.s ⁻¹ .m ⁻² Pa ⁻¹)

k Énergie cinétique turbulente (J.kg-1) Coefficient de proportionnalité empirique (-) k, k, Coefficient de proportionnalité de l'équation de Hinze-Kolmogorov (-) Coefficient correcteur (-) k, Longueur (m) L $\boldsymbol{L}_{\text{div}}$ Longueur du divergent d'un Venturi (m) Longueur utile d'une plaque ou canal de séparateur (m) L., Chaleur latente d'évaporation (J.kg⁻¹) L, Échelle de longueur des tourbillons turbulents (m) Masse molaire (kg.mol⁻¹) М m Masse (kg) N Nombre de bulle, goutte ou particule ou nombre de moles (-) N Vitesse de rotation d'un agitateur (s-1) Nombre de gouttes pulvérisées par seconde (s-1) $\dot{N}_{\rm I}$ Coefficient de débit d'un agitateur (-) N_o N_{π} Coefficient de puissance d'un agitateur (-) Vecteur normal (-) n Nombre de bulles ou de gouttes ou moles par unité de volume (m⁻³) n n Exposant d'une loi d'écoulement vortex (-) Р Pression (N.m⁻²) P. Pression partielle de l'air sec (Pa) $\mathsf{P}_{\mathsf{atm}}$ Pression atmosphérique (Pa) Pc Pression critique (Pa) $\mathbf{P}_{\mathrm{sat}}$ Pression de vapeur saturante P, Pression totale (Pa) ΔP, Perte de charge (Pa) Ρ, Pression partielle de la vapeur (Pa) Q Chaleur spécifique (J.kg⁻¹) Débit volumique (m³.s-1) q Débit massique (kg.s⁻¹) q_m Débit massique critique (kg.s⁻¹) q_{mc}

XIII

Constante universelle des gaz parfaits (J.K⁻¹.mol⁻¹)

Vitesse radiale de collapse d'une bulle (m.s⁻¹)

R

R

Ŕ

Rayon (m)

$R_{\scriptscriptstyle{e}}$	Rayon extérieur de la roue d'une pompe (m)
$R_{_{\rm H}}$	Rayon hydraulique moyen (= D_H /2) (m)
r	Distance radiale (m)
$r_{_{\rm G}}$	Constante d'un gaz parfait = R/M (J.K ⁻¹ .kg ⁻¹)
S	Entropie spécifique (J.kg ⁻¹ .K ⁻¹)
s	Distance curviligne (m) ou
s	Scalaire (-)
Т	Température (K)
T _{sat}	Température de vapeur saturante (K)
Т	Force de traînée d'un obstacle (N)
Т	Diamètre d'un bac agité (m)
T _c	Température critique (K)
T_{p}	Température d'une paroi solide (K)
t	Temps (s)
u	Composante de la vitesse suivant l'axe x (m.s ⁻¹)
u'	Fluctuation turbulente autour d'une valeur moyenne de la vitesse suivant x $(m.s^{-1})$
u' _m	Moyenne quadratique des fluctuations de vitesse suivant x (m.s ⁻¹)
V	Vitesse du fluide (m.s ⁻¹)
V_a	Vitesse absolue (m.s ⁻¹)
V_c	Vitesse critique (m.s ⁻¹)
$V_{\rm e}$	Vitesse d'entraînement (m.s-1)
\mathbf{V}_{R}	Vitesse d'une bulle, goutte ou particule relativement au fluide environnant $(m.s^{\mbox{\tiny -1}})$
$V_{_{\mathrm{S}t}}$	Vitesse terminale d'une bulle, goutte ou particule relativement au fluide environnant $(m.s^{-1})$
v	Composante de la vitesse suivant l'axe y (m.s ⁻¹)
v'	Fluctuation turbulente autour d'une valeur moyenne de la vitesse suivant y $(m.s^{-1})$
v' _m	Moyenne quadratique des fluctuations de vitesse suivant y (m.s ⁻¹)
V_{μ}	Échelle de vitesse des tourbillons visqueux dissipatifs (m.s ⁻¹)
$\mathbf{v}_{\mathbf{r}}$	Vitesse radiale en coordonnées cylindriques (m.s ⁻¹)
$\mathbf{v}_{_{\boldsymbol{\Theta}}}$	Vitesse tangentielle en coordonnées cylindriques (m.s ⁻¹)
V.	Échelle des vitesses des fluctuations turbulentes (m.s-1)
V _{*α}	Échelle des vitesses des fluctuations turbulentes réduite (m.s ⁻¹)

W Travail d'un gaz (J.kg⁻¹) W. Travail technique d'un gaz (J.kg-1) w Composante de la vitesse suivant l'axe z (m.s⁻¹) w' Fluctuation turbulente autour d'une valeur movenne de la vitesse suivant z (m.s⁻¹) Movenne quadratique des fluctuations de vitesse suivant z (m.s⁻¹) w'_ Х Coefficient de la corrélation Lockart-Martinelle (-) Distance sur un axe horizontal (m) ou х Titre massique de vapeur (-) х Distance sur un axe horizontal (m) ٧ Humidité absolue de l'air humide (kg.kg-1) \mathbf{y}_{v} Z Compressibilité d'un gaz (-) Distance sur un axe vertical (m) z Lettres grecques Fraction volumique de la phase dispersée (-) α В Coefficient de masse ajoutée (-) Rapport massigue de la phase dispersée (-) В Accélération (m.s⁻²) Υ Υ Exposant polytropique (-) δ Écart infinitésimal Taux de dissipation de l'énergie turbulente (W.kg-1) ε €,, Taux de dissipation de l'énergie turbulente réduit (W.kg-1) Taux de dissipation de l'énergie turbulente au voisinage d'un mobile f_{D} d'agitation (W.kg⁻¹) Rendement (-) η Échelle de Kolmogorov des tourbillons dissipatifs visqueux (m) ท Efficacité de collision (-) η Efficacité de captation d'un équipement séparateur (-) ης $\eta_{
m adia}$ Rendement adiabatique (-) A Température exprimée en °C θ Angle azimutal en coordonnées cylindrique (rd) θ Angle d'inclinaison des plaques d'un décanteur (rd) λ Coefficient de frottement de Moody (-)

Conductivité thermique d'un fluide (W.m-1.K-1)

λ

Coefficient de frottement de Moody en transport pneumatique (-) $\lambda_{_{\rm f}}$ Conductivité thermique du matériau constitutif d'une paroi solide (W.m-1.K-1) λ_{n} Coefficient de frottement en transport pneumatique (-) λ Viscosité dynamique (Pa.s⁻¹ = kg.m⁻¹.s⁻¹) μ Viscosité dynamique turbulente (Pa.s⁻¹) μ_{-} ν Viscosité cinématique (m².s⁻¹) Viscosité cinématique turbulente (m².s⁻¹) $\nu_{\scriptscriptstyle au}$ Coefficient de perte de charge (-) ع π Taux de compression (-) П Puissance hydraulique ou aéraulique (W) Π. Puissance électrique (W) Puissance mécanique (W) $\mathbf{\Pi}_{\mathsf{M}}$ Masse volumique (kg.m⁻³) ρ Tension superficielle (N.m⁻¹) σ Nombre de Thoma de cavitation (-) σ τ Durée ou temps caractéristique (s) Temps de drainage d'un film (s) τ Durée de vie d'un tourbillon turbulent (s) $au_{\scriptscriptstyle au}$ Temps de réponse d'une particule (s) τς Durée d'évaporation d'une goutte (s) τ Volume (m⁻³) บ Invariant de débit d'une pompe (-) ф Flux de chaleur (W) Invariant de pression d'une pompe (-) Vitesse de rotation (s-1) ω ω, Fréquence de coalescence (s⁻¹) Indices Relatif à l'air sec Α Relatif à un composant ou espèce A Relatif à un composant ou espèce B В Relatif à un bac agité

Relatif à la phase gazeuse

Relatif à la phase fluide porteur

- Relatif à l'état générateur
- . Relatif à une interface
- Relatif à la phase liquide
- Relatif à l'écoulement diphasique moyenné
- Relatif à la phase dispersée (en suspension)
- Relatif à la vapeur
- Relatif à un composant ou espèce X
- x Suivant l'axe x
- y Suivant l'axe y
- **z** Suivant l'axe z
- Initial
- Relatif à l'état du fluide au loin
- Relatif à une grandeur adimensionnalisée.

Symboles

- ≈ « Peu différent de »
- « Du même ordre de grandeur que »
- ∞: « Proportionnel à »
- Moyenne temporelle
- « Égal par définition à »

SCIENCE ET INGÉNIERIE DES MATÉRIAUX

Les écoulements diphasiques sont omniprésents dans les procédés industriels. Tous les secteurs sont concernés par le comportement et la maîtrise des mélanges non miscibles de gaz et de liquides, de plusieurs liquides entre eux, de solides et de fluides, que ce soit pour la production de matières premières (mines, pétrole, gaz), l'environnement, la production d'énergie, la chimie, la pharmacie ou l'agroalimentaire. Malgré la complexité apparente des systèmes, il est toutefois possible d'effectuer une modélisation physique du procédé à partir des équations intégrées de la mécanique des fluides.

Précis et didactique, ce livre regroupe les éléments fondamentaux nécessaires aux calculs prédictifs des équipements et à la compréhension des phénomènes qui caractérisent ces écoulements. L'originalité de cet ouvrage réside dans la présentation synthétique de tous les types de systèmes (monophasique, gaz-liquide, liquide-liquide, fluide-solide) et dans l'illustration des notions introduites par des exemples industriels concrets.

À la fois fondamental et pratique, cet ouvrage s'adresse non seulement aux ingénieurs concepteurs et exploitants d'équipements pour fluides diphasiques qui y trouveront les connaissances essentielles à l'amélioration de leur pratique, mais aussi aux étudiants et aux enseignants des licences et masters de mécanique des fluides ou de génie des procédés.

|acques Woillez est ingénieur diplômé de l'École nationale supérieure de techniques avancées (ENSTA), qualifié pour les fonctions de maître de conférences. Il a 35 ans d'expérience professionnelle en ingénierie des fluides et est actuellement responsable de l'activité « énergies thermiques » chez Setec Energy Solutions.

