

Confinement des turbomachines

Léon Joseph Randrianarivo

Confinement des turbomachines

Dans la collection EDF R&D

Efficacité énergétique – Des principes aux réalités P. Baudry, 2016

Les nanomatériaux et leurs applications pour l'énergie électrique D. Noël, 2014

Guide international du comptage intelligent F. Toledo, 2012

Numériser le travail – Théories, méthodes, expérimentations S. Lahlou, V. Nosulenko, E. Samoylenko, 2012

L'énergie hydraulique, 2^e édition R. Ginocchio, P.-L. Viollet, 2012

Le système nerveux du réseau français de transport d'électricité (1946-2006) : 60 années de contrôle électrique J. Lecouturier, 2012

La physique des réacteurs nucléaires S. Marguet, 2011

Marketing critique : le consommateur collaborateur en question B. Cova, M. Louyot-Gallicher, A. Bonnemaizon, 2010

Graphes et algorithmes M. Gondran, M. Minoux, 2009

Gestion de la complexité dans les études quantitatives de sûreté de fonctionnement des systèmes M. Bouissou, 2008

Calcul de champ électromagnétique : exemples d'application J.-C. Vérité, J.-P. Ducreux, G. Tanneau, P. Baraton, B. Paya, 2007

Les télécommunications au cœur du système électrique français (1946-2000) A. Giandou, C. Leclère, J. Lecouturier, J.-M. Spetebroodt, H. Thibert, A. Vilatte, 2007

Innover en marketing, 15 tendances en mouvement B. Cova, M. Louyot-Gallicher, 2006

Éléments finis pour l'ingénieur : grands principes et petites recettes P. Thomas, 2006

Évaluation et maîtrise du vieillissement industriel A. Lannoy, H. Procaccia, 2005

Dans la collection Socio-économie de l'énergie

Énergie et transformations sociales – Énquête sur les interfaces énergétiques J. Cihuelo, A. Jobert, C. Grandclément, 2015

Confinement des turbomachines

Léon Joseph RANDRIANARIVO

Ingénieur de l'Ecole nationale supérieure d'Arts et Métiers Ingénieur Chercheur Expert en retraite du Département Mécaniques des Fluides, Énergies et Environnement d'EDF Lab – Chatou

editions.lavoisier.fr

Direction éditoriale : Emmanuel Leclerc Édition : Emmanuel Leclerc Mise en pages : Patrick Leleux PAO, Caen (14)

À mon épouse Fara

Remerciements

J'ai commencé à rédiger cet ouvrage vers la fin de ma carrière au centre R & D d'EDF à Chatou, carrière au cours de laquelle j'ai eu la chance de consacrer une bonne partie sur les systèmes de confinement des principaux groupes de pompage des centrales thermiques classiques et nucléaires. Dans cette aventure, j'ai été épaulé par mon formidable collègue Louis Mougey, éminent spécialiste EDF sur les étanchéités, à qui j'adresse toute ma reconnaissance la plus sincère pour tout ce qu'il m'a appris dans le domaine. Ma reconnaissance va également à mes autres collègues Denis Buchdahl, Gérard Morel et Jean Luc Rivière pour les échanges très fructueux que j'ai pu avoir avec eux sur les étanchéités.

Par ailleurs, je remercie infiniment Michel Lépine, Ingénieur produit joints d'arbre d'Areva NP Ets de Jeumont, que j'ai beaucoup côtoyé au cours de ma carrière à EDF, et qui a pris gentiment le temps, malgré son planning chargé, de décortiquer cet ouvrage pour me communiquer ses précieuses remarques en tant que spécialiste dans le domaine.

Enfin, mes remerciements vont également à Patrice Rahon, Ingénieur technico-commercial de la société EagleBurgmann France, que j'ai également beaucoup côtoyé au cours de ma carrière, pour les conseils et remarques qu'il m'a prodigués tout au long de l'écriture de cet ouvrage notamment sur les aspects innovation.

Sigles

Areva NP Ets de Jeumont	Areva NP Établissement de Jeumont fabrique et assure la maintenance en centrale et en atelier chaud des composants mobiles de la boucle primaire des réacteurs nucléaires : les Groupes Motopompes Primaires et les Mécanismes de Commande de Grappes
СРР	Circuit Primaire Principal
EPR	Initialement <i>European Pressurized water Reactor puis Evolutionary Power Reactor</i> . La première centrale nucléaire française de ce type est Flamanville 3, elle est dimensionnée pour 1 630 MWe net
GM	Garniture Mécanique
GMPP	Groupe Motopompe Primaire. Les GMPP sont les pompes qui assurent la circulation de l'eau dans le CPP et donc le refroidissement du coeur
GV	Générateur de Vapeur
PTFE	PolyTétraFluoroÉthylène connu sous le nom de Téflon dans le langage courant (étymologiquement : Téflon est un clin d'œil à TÉtra-FLuoroéthylène la terminaison « on » est en rapport avec les matières plastiques)
RCV	Réacteur contrôle Chimique et Volumétrique. Le système RCV assure le contrôle et le maintien de la quantité de fluide nécessaire dans le CPP, permet de contrôler la réactivité du cœur, assure le contrôle chimique du CPP et fournit l'eau froide d'injection nécessaire au fonctionnement des joints d'arbres des GMPP à basse température (pour cette fonction, il est en redondance avec le système RRI)
REP	Réacteur à Eau Pressurisée. Dans une centrale nucléaire de la filière REP, les calories produites dans le réacteur sont transportées vers les générateurs de vapeur (GV) par une eau pressurisée (environ 155 bar – 300 °C) <i>via</i> les pompes primaires (GMPP) »
RPE	Réacteur Purges Events et exhaures nucléaires. Le système RPE a pour fonction de collecter sélectivement les effluents liquides et gazeux qui peuvent présenter une contamination radioactive

RRIRéacteur Réfrigération Intermédiaire. Le système RRI a une double fonction :
1/ assurer dans tous les cas le fonctionnement du réacteur, la réfrigération de
tous les circuits auxiliaires y compris les circuits de sauvegarde et ; 2/ fournir
à tous les systèmes de la centrale une eau de réfrigération traitée qui garantit
leur bon fonctionnement en toutes circonstances. Il fournit notamment
le réfrigérant de la barrière thermique des joints d'arbre des GMPP (en
redondance avec l'injection RCV) et du système RRA qui assure le
Refroidissement du Réacteur à l'Arrêt. Le RRI est lui-même refroidi par un
circuit dit « d'eau brute » secourue dénommé SEC.

TPA Turbo Pompe Alimentaire. Les TPA servent à alimenter en eau dégazée les générateurs de vapeur du côté de l'îlot conventionnel d'une centrale nucléaire

Notations

Les presse-étoupe (Chapitre 1)

μ	-	Coefficient de frottement
ω	rd/s	Vitesse angulaire
μ	-	Coefficient de frottement en statique entre les tresses et la chemise
μ_b	-	Coefficient de frottement en statique entre les tresses et le boitard
$\sigma_{_D}$	Ра	Pression de serrage du fouloir
σ_k	Ра	Contrainte axiale en fond de boitard
σ_x	Ра	Contrainte axiale dans les tresses à la distance x du fouloir
cf(x)		Couple de frottement tresses/arbre pour un élément de tresse de longueur <i>dx</i>
$Ct_{f}(L)$	mN	Couple de frottement de l'ensemble des tresses de longueur L sur l'arbre
D	m	Diamètre du boitard
d	m	Diamètre de l'arbre
F	Ν	Effort axial exercé par le fouloir sur l'empilage de tresses
f	Ν	Effort de frottement dans le contact tresses/arbre
f_{b}	Ν	Effort de frottement dans le contact tresses/boitard
h	m	Hauteur des anneaux de tresses dans leur boitard
J	m	Jeu radial arbre/boitard
Κ		Coefficient de pression latérale : rapport entre q_x et σ_x
Κ,		Coefficient de pression latérale côté arbre
K _o		Coefficient de pression latérale côté stator
L	m	Longueur totale des tresses

Ν	tr/min	Vitesse de rotation
<i>p</i> _{1x}	Ра	Pression radiale dans l'interface tresses/chemises d'arbre (ou tige de manœuvre de vannes) à la distance x du fouloir
<i>q</i> _{ax}	Ра	Pression latérale dans le contact tresses/chemises à la distance x du fouloir
q_{bx}	Pa	Pression latérale dans le contact tresses/boitard à la distance x du fouloir
Q_x	Ν	Effort de cisaillement radial à la distance x de la base du fouloir
Ra	μm	Rugosité (écart moyen arithmétique par rapport à la ligne moyenne de rugosité)
V	m/s	Vitesse

Les joints hydrostatiques (Chapitre 2)

α	rd	Angle de conicité de l'interface d'étanchéité
μ	kg/(s.m)	Viscosité dynamique
ρ	kg/m³	Masse volumique
η		Paramètre qui gère le sens de la force de frottement dans le contact bague/douille en fonction du sens d'évolution de la pression : η : – 1 à « <i>P</i> » croissante, 0 à « <i>P</i> » stabilisée, + 1 à « P » décroissante
HP	Ра	Haute pression relative
BP	Ра	Basse pression relative
ΔP	Ра	Différence de pression aux bornes du joint
P (r)	Ра	Champ de pression dans l'interface du joint selon r
Rd	m	Rayon de la douille de glissement de la partie flottante du joint n° 1
Re	m	Rayon extérieur des glaces
Ri	m	Rayon intérieur des glaces
h	m	Écartement de l'interface au rayon intérieur du joint
Ζ	m	Écartement de l'interface au rayon « r »
lb	m	Largeur de la bague de glissement
v	m/s	Vecteur vitesse
V _r	m/s	Composante de la vitesse selon « r »
$F_{r,\theta,z}$	Ν	Force de volume
f		Coefficient de frottement
Fh	Ν	Poussée d'Archimède
PJ	kg	Poids du joint n° 1 flottant
Ff	Ν	Force de frottement
FHP	Ν	Force de pression amont
FBP	Ν	Force de pression aval

FA	Ν	Force d'assise
FS	Ν	Force de soulèvement
Q	m³/s	Débit de fuite volumique
Q_m	kg/s	Débit de fuite massique
t	S	Temps
Т	°C	Température

Les garnitures mécaniques (Chapitre 3)

μ	Pa. s	Viscosité dynamique du fluide à étancher
γ	rd	Angle de mésalignement
ΔP	Ра	Différentiel de pression aux bornes des faces d'étanchéité
FS	Ν	Composante déviationnelle de la force d'ouverture selon Etsion
FS	-	Expression adimensionnelle de « FS » selon Etsion
Q	m³/s	Débit de fuite
Q	-	Débit adimensionnel selon Etsion $\overline{Q} = \frac{6 Q}{\pi (P1 - P2)h^3}$
Ri	-	Rayon adimensionnel qui s'exprime par $\overline{Ri} = Ri / Re$
Rm	-	Rayon moyen adimensionnel qui s'exprime par $\overline{Rm} = (Re + Ri) / 2Re$
API		American Petroleum Institute
b	m	Largeur des faces de frottement
De	m	Diamètre extérieur des faces
Dm	m	Diamètre moyen des faces
FH	Ν	Force hydraulique de fermeture
Fjg	Ν	Force de frottement du joint glissant. <i>Nota :</i> En régime stationnaire, <i>Fjg</i> est nulle
FO	Ν	Force d'ouverture dans l'interface de frottement
FOets	Ν	Force d'ouverture dans l'interface de frottement selon Etsion
FR	Ν	Force exercée par le ou les ressorts
Frésf	Ν	Force résiduelle de fermeture
Ft	Ν	Force totale de fermeture
G	-	Paramètre de lubrification (nombre sans dimension)
h	m	Ecartement équivalent des faces (calculé sur la base de la rugosité)
k	-	Coefficient de compensation
Mg	N.m	Moment de frottement
Ν	(tr/mn)	Vitesse de rotation de l'arbre
P (r)	Ра	Champ de pression dans l'interface
P1	Pa	Pression à étancher

P2	Ра	Pression extérieure
РЗ	Ра	Pression de barrage
Pg	Ра	Pression de frottement autrement dit le rapport de la force résiduelle de fermeture Frésf sur la surface de frottement « SF ».
PR	Ра	Pression exercée par les ressorts sur les faces de frottement
Psat	Pa abs	Pression de saturation
Pud	W	Puissance dissipée
Puf	W	Puissance dissipée par la turbulence autour de la garniture mécanique
Q	m³/s	Débit de fuite
r	m	Rayon
Ra1	μm	Rugosité moyenne de la face de frottement 1
Ra2	μm	Rugosité moyenne de la face de frottement 2
Re	m	Rayon extérieur de la face d'étanchéité
Res	m	Rayon extérieur d'un soufflet métallique pour une garniture mécanique à soufflet
Ri	m	Rayon intérieur de la face d'étanchéité
Ris	m	Rayon intérieur d'un soufflet métallique pour une garniture mécanique à soufflet
Ri	-	Rayon adimensionnel qui s'exprime par $\overline{Ri} = Ri / Re$
Rm	_	Rayon moyen adimensionnel qui s'exprime par $\overline{Rm} = (Re + Ri) / 2Re$
Res	m	Rayon extérieur d'un soufflet
Ri	m	Rayon intérieur
Rm	m	Rayon moyen
Rmax	μm	Profondeur maxi de rugosité
S	bar/s	Facteur d'interface (empirique) fonction de la vitesse de glissement (dans le modèle de Mayer (éq. 3.29) la pression de frottement « <i>Pg</i> » est exprimé en bar)
SF	m²	Surface de frottement
SH	m²	Surface soumise à la pression du fluide à étancher
V_q	m/s	Vitesse de glissement au diamètre moyen des faces
x	_	Coefficient de force d'ouverture dans l'interface de frottement
Ζ	m	Écartement des faces en fonction du rayon en présence de conicité
α	rd	Angle de conicité
θ	rd	Coordonnée angulaire

Table des matières

Remerciements	VII
Sigles	IX
Notations	XI
Table des matières	xv
Liste des figures	XIX
Liste des tableauxX	XIII
Avant-propos	1

Chapitre 1

Le	s pre	sse-étoupe	5
1.	. Introduction		
2.	Les r	nécanismes de répartition des pressions de contact	8
	2.1.	La répartition des pressions latérales des tresses sur l'arbre et sur le boitard.	9
	2.2.	La relation entre les coefficients de pressions latérales	
		$\langle K_a \rangle$ et $\langle K_b \rangle$	11
	2.3.	Impact de la rotation de l'arbre sur la répartition	42
		des pressions laterales.	13
	2.4.	Applications numériques	14
	2.5.	En résumé	16
3.	La p	uissance dissipée dans le contact tresses/chemises	17
	3.1.	La puissance dissipée dans le contact tresses/arbre	18
	3.2.	Applications numériques	19
	3.3.	En résumé	19
4.	La co	onception des tresses.	20
	4.1.	Généralité sur les matériaux des tresses	20

	4.2. L'imprégnation	21	
	4.3. Les principaux matériaux des tresses et leurs limites d'utilisation .	22	
	4.4. Les modes de tressage	25	
	4.5. En résumé	27	
5.	Les chemises d'arbre	28	
6.	. Les presse-étoupe dans la pratique		
	6.1. Les différentes variantes de montage	30	
	6.2. Le dimensionnement des tresses	34	
	6.3. Le dimensionnement de l'environnement des tresses	35	
	6.4. Le montage et le serrage des garnitures (Servant)	36	
7.	Connaissance des défauts	38	

Chapitre 2

	Chapter 2	
Les	s joints hydrostatiques	41
1.	Introduction	41
 Modélisation du joint en solide indéformable 2.1 Joint modèle 		45 45
	2.2. Les équations de Navier-Stokes	46
	2.3. La vitesse d'écoulement	48
	2.4. Champ de pression dans l'interface	49
	2.5. Débit de fuite	51
3. Mécanismes d'équilibre du joint		52
	3.1. Force de soulèvement « <i>FS</i> »	53
	3.2. Force d'assise « <i>FA</i> »	54
	3.3. Organigramme de calcul	55
	3.4. Applications numériques	56
4.	Modélisation en solide déformable	60
	4.1. Applications numériques	62
	4.2. Retombées pratiques de la démarche	62
5.	En résumé	63

Chapitre 3

Les	s garnitures mécaniques	6	57
1.	Introduction	6	57
2.	La technologie des garnitures mécaniques		72
	2.1. Les principaux composants		72
	2.2. Revue des variantes		74
	2.3. En résumé		78
3.	Mécanismes de fonctionnement des garnitures mécaniques		
	3.1. Garniture mécanique modèle	8	30
	3.2. Bilan des forces en présence	8	30
	3.3. Régimes de lubrification des faces	8	31
	3.4. La compensation	8	33
	3.5. Force hydraulique <i>FH</i>	8	34
	3.6. Force d'ouverture <i>FO</i>	8	34

	3.7. Pression de contact « Pg »	89 01
	3.9 Les garnitures mécaniques à soufflet	93
	3 10 Les garnitures mécaniques élasto-thermo-hydrodynamique	94
	3.11. En résumé	95
Л	Appréciation de la fuite d'une carniture mécanique	98
ч.	41 Démarche	98
	4.2 Fuite en régime de lubrification en frottement limite	98
	4.3. Fuite théorique	99
	4.4. En résumé	104
5.	Évaluation de la puissance dissipée	105
	5.1. Estimation de la puissance dissipée dans la pratique	105
	5.2. Application numérique	106
	5.3. En résumé	107
6.	Les matériaux utilisés pour les faces d'étanchéité	107
	6.1. Considération générale	107
	6.2. Le facteur de charge	108
	6.3. Les matériaux durs	109
	6.4. Les matériaux innovants	112
	6.5. En résumé	115
7.	Les joints secondaires et les matériaux associés	116
	7.1. Les différentes technologies des joints secondaires	116
	7.2. Les élastomères à base de caoutchouc	117
8.	Les plans de balayage des garnitures mécaniques	121
	8.1. Les différentes dispositions de montage des garnitures	171
	8.2 Décignation	121
	8.3 Spécificités des différents plans de montage	123
٥	Connaissance des défauts	124
9.	91 Défauts des faces d'étanchéité	140
	92 Les joints secondaires	150
	9.3. Les soufflets	151
	9.4. En résumé	152
10.	Apercu sur les règles de montage et de maintenance des garnitures	
	mécaniques	152
	10.1. Les règles de stockage avant montage	152
	10.2. Les règles de déballage des GM	153
	10.3. Les vérifications avant montage	153
	10.4. Les précautions avant montage	153
	10.5. Les règles de montage	154
	10.6. La maintenance des garnitures mécaniques	155
	10./. En resume	156
11.	Aperçu sur un cahier des charges types pour le choix des garnitures	156
	inecaniques	001
		
Bik	Diographie	159

Liste des figures

<i>Figure 0.1.</i> Pompe primaire à rotor noyé de la centrale à eau pressurisée de Chooz A.	2
<i>Figure 0.2.</i> Accouplement magnétique	2
Figure 1.1. Principe de l'étanchéité par presse-étoupe	6
Figure 1.2. Schéma d'une nompe centrifuge équipée de presse-étoupe	7
Figure 1.3 Modélisation des tresses	10
Figure 1.4. Charges appliquées sur un élément de tresse de longueur dy	11
Figure 1.4. Charges appliquées sur un élément de tresse de longueur dx	11
Figure 1.5. Impact de la rotation sur la repartition des pressions laterales.	15
Figure 1.6. Repartitions des pressions laterales dans les contacts	15
Figure 1.7. Répartition de l'usure sur l'arbre	15
<i>Figure 1.8.</i> Influence du coefficient de frottement sur la pression latérale sur l'arbre	16
<i>Figure 1.9.</i> Comparaison des profils « AK » (<i>EagleBurgmann</i>) et « traditionnel »	27
Figure 1.10. Chemise d'arbres pour presse-étoupe	29
Figure 1.11. Montage classique d'un presse-étoupe	30
Figure 1.12. Montage classique d'un presse-étoupe avec rondelles	
« Belleville »	31
<i>Figure 1.13.</i> Montage d'un presse-étoupe avec une lanterne	31
<i>Figure 1.14.</i> Montage d'un presse-étoupe avec ressort intégré	32
<i>Figure 1.15.</i> Montage d'un presse-étoupe avec lanterne pour « P » à étancher < Patm	32
Figure 1.16. Montage d'un presse-étoupe avec anneau de refroidissement	
ou de réchauffage	33
<i>Figure 1.17.</i> Montage pour fluide toxique et dangereux	33

<i>Figure 1.18.</i> Montage avec apport de graisse	34
<i>Figure 1.19.</i> Sections des tresses en fonction du diamètre de l'arbre	34
<i>Figure 1.20.</i> Nombre de tresses en fonction de la pression à étancher	35
<i>Figure 1.21.</i> Dimensionnement de l'environnement des tresses	35
<i>Figure 1.22.</i> Découpe des tresses	37
<i>Figure 1.23.</i> Technique de montage des tresses	37
Figure 2.1. Les groupes motopompes primaires dans leur environnement.	42
<i>Figure 2.2.</i> Principe du joint hydrostatique des pompes primaires	43
<i>Figure 2.3.</i> Configuration du « joint modèle »	45
Figure 2.4. Exemples de profil de pression.	50
<i>Figure 2.5.</i> Débit en fonction de l'écartement « <i>h</i> » pour trois exemples de	
conicité	52
<i>Figure 2.6.</i> Sollicitations d'un joint hydrostatique	53
Figure 2.7. Organigramme de calcul des conditions d'équilibre du joint	
en solide indéformable	55
Figure 2.8. Forces de soulèvement « FS » et d'assise « FA » – Equilibre	FC
Figure 2.0 Phénomène d'hystérécie du Joint 1	50
Figure 2.10. Organigramme de calcul des conditions d'équilibre en solide	50
déformable.	61
	•
<i>Figure 3.1.</i> Configuration basigue d'une garniture mécanique	68
<i>Figure 3.2.</i> Exemple de montage d'une garniture mécanique	
dans une pompe	69
<i>Figure 3.3.</i> Concept de garniture mécanique radiale	70
<i>Figure 3.4.</i> garniture mécanique tournante en montage intérieur	74
Figure 3.5. Montage intérieur	74
<i>Figure 3.6.</i> Montage extérieur	75
<i>Figure 3.7.</i> Garniture mécanique tournante	75
<i>Figure 3.8.</i> Garniture mécanique stationnaire	76
Figure 3.9. Élément élastique monoressort	76
Figure 3.10. Élément élastique multiressorts	76
<i>Figure 3.11.</i> Élément élastique à soufflet soudé	77
<i>Figure 3.12.</i> Élément élastique à soufflet hydroformé	77
<i>Figure 3.13.</i> Élément élastique de type rondelle « Belleville »	77
<i>Figure 3.14.</i> Élément élastique à soufflet élastomère	78
<i>Figure 3.15.</i> Forces appliquées à une garniture mécanique à joint glissant.	81
<i>Figure 3.16.</i> Courbe de Stribeck	82
<i>Figure 3.17.</i> Garniture mécanique non compensée	83
<i>Figure 3.18.</i> Garniture mécanique compensée	83
<i>Figure 3.19.</i> Géométries possibles de l'interface d'étanchéité	85

<i>Figure 3.20.</i> Géométrie possible de l'interface d'étanchéité	85
Figure 3.21. Profil de pression dans l'interface en fonction de l'angle	
d'ouverture α	86
<i>Figure 3.22.</i> Profil de pression à conicité nulle à partir des modèles	07
(eq. 3.8) et (eq. 3.9).	87
et de mésalignement	92
Figure 3 24 Forces appliquées à une garniture mécanique à soufflet	94
Figure 3.25 Garniture mécanique élasto-thermo-hydrodynamiques	95
Figure 3.26. Eacteur d'interface « S » = $f(V\alpha)$ (EM72)	99
Figure 3.27. Interface d'étanchéité	100
Figure 3.28. Modélisation des faces d'étanchéité	101
<i>Figure 3.29.</i> Impact de la conicité et/ou du mésalignement.	102
<i>Figure 3.30.</i> Délimitation de la fuite entre les régimes de lubrification	
limite et hydrostatique.	103
Figure 3.31. Exemple d'évolution de la puissance dissipée pratique	
d'une garniture mécanique	107
<i>Figure 3.32.</i> Coefficients de frottement comparés en contact lubrifié	114
<i>Figure 3.33.</i> Coefficients de frottement comparés en frottement sec	114
Figure 3.34. Différents types de joints statiques	117
Figure 3.35. Les trois principales dispositions de montage	
des garnitures mecaniques	121
<i>Figure 3.36.</i> Plan de balayage 01	124
<i>Figure 3.37.</i> Plan de balayage 02	124
<i>Figure 3.38.</i> Plan de balayage 11	125
<i>Figure 3.39.</i> Plan de balayage 12	126
<i>Figure 3.40.</i> Plan de balayage 13	126
<i>Figure 3.41.</i> Plan de balayage 14	127
<i>Figure 3.42.</i> Plan de balayage 21	128
<i>Figure 3.43.</i> Plan de balayage 22	128
Figure 3.44. Plan de balayage 23	129
	130
Figure 3.46. Plan de balayage 32	131
	131
Figure 3.48. Plan de balayage 52.	132
Figure 3.49. Plan de balayage 53A	133
Figure 3.50. Plan de balavage 538	155
<i>Figure 2.52</i> . Plan de balavage 54.	154
<i>Figure 2.52.</i> Plan de balavage 62	133
<i>Figure 2.55.</i> Plati de balayage 65.	135
Figure 3.54. Plan de balayage 65	130
<i>rigure 3.55.</i> Plan de balayage /2	137

<i>Figure 3.56.</i> Plan de balayage 74	137
<i>Figure 3.57.</i> Plan de balayage 75	138
<i>Figure 3.58.</i> Plan de balayage 76	139
Figure 3.59. Sens de montage des GM avec entraînement de bague	
tournante par le ressort.	154
<i>Figure 3.60.</i> Vis de pompage intégrée – Sens de circulation	155

Liste des tableaux

Tableau 1.1. Coefficients de pression latérale : comparaison calcul/essai	13
Tableau 1.2. Exemple de données caractéristiques des garnitures	
à tresses	14
Tableau 1.3. Caractéristiques du coton.	22
Tableau 1.4. Caractéristiques du lin	22
Tableau 1.5. Caractéristiques du chanvre. Caractéristique	23
Tableau 1.6. Caractéristiques de la ramie. Image: Image Image: I	23
Tableau 1.7. Caractéristiques du PTFE.	23
Tableau 1.8. Caractéristiques des aramides	24
Tableau 1.9. Caractéristiques du graphite	24
Tableau 1.10. Caractéristiques des fibres de verre. Image: Caractéristiques des verre. Image: Caractéristiques des fibres de verre. Image: Caractéristiques des verre.	24
Tableau 1.11 : Caractéristiques des matériaux métalliques.	25
Tableau 1.12. Évolution des limites d'utilisation des tresses	25
Tableau 1.13 : Différents modes d'élaboration des tresses.	26
Tableau 1.14 : Troubleshooting des presse-étoupe	38
Tableau 2.1. Caractéristiques du joint modèle.	46
Tableau 2.2. Conditions aux bornes du joint	46
Tableau 2.3. Débit de fuite pour différents rayons de douille « <i>Rd</i> » et de conicités « α »	57
Tableau 2.4. Exemple d'application de la démarche de diagnostic	
d'une dégradation des contacts bague/douille	60
Tableau 2.5. Calculs en solide indéformable	62
Tableau 2.6. Calculs en solide déformable	62
Tableau 2.7. Scénarii de défauts et solutions palliatives possibles	63

Tableau 3.1. Plage d'utilisation des garnitures mécaniques	69
Tableau 3.2. Caractéristiques de notre garniture mécanique modèle	~~
compensees ou non	80
Tableau 3.3. Donnees de simulation pour les calculs.	86
Tableau 3.4. Calculs compares de la force d'ouverture.	89
<i>Tableau 3.5.</i> Modèles de garnitures mécaniques compensées ou non – Données	90
Tableau 3.6. Garnitures mécaniques compensées ou non – Sollicitations.	91
Tableau 3.7. Force d'ouverture – Comparaison EDF/Etsion/modèle approché (h au Di. 1 μm)	93
Tableau 3.8. Comparaison des fuites selon (éq. 3.33) et (éq. 3.34).	101
Tableau 3.9. Données des calculs de fuite	103
Tableau 3.10. Modèles de garnitures mécaniques compensées ou non – Données	106
Tableau 3.11. Garnitures mécaniques compensées ou non –	
Sollicitations	106
Tableau 3.12. Facteurs de charges.	109
Tableau 3.13. Comparaison des propriétés du DLC et du revêtement DiamondFaces [®]	113
Tableau 3.14. Principales familles d'élastomères	118
Tableau 3.15. Domaines d'utilisation des élastomères.	119
Tableau 3.16. Références des PLANS par type de garniture	122
Tableau 3.17. DÉFAUT D1 – Faces d'étanchéité – Expertises et solutions	141
Tableau 3.18. DÉFAUT D2 – Faces d'étanchéité – Expertises et solutions	141
Tableau 3.19. DÉFAUT D3 – Faces d'étanchéité – Expertises et solutions.	142
Tableau 3.20. DÉFAUT D4 – Faces d'étanchéité – Expertises et solutions.	143
Tableau 3.21. DÉFAUT D5 – Faces d'étanchéité – Expertises et solutions.	143
Tableau 3.22. DÉFAUT D6 – Faces d'étanchéité – Expertises et solutions.	144
Tableau 3.23 – DÉFAUT D7 – Faces d'étanchéité – Expertises et solutions	145
Tableau 3.24. DÉFAUT D8 – Faces d'étanchéité – Expertises et solutions.	145
Tableau 3.25. DÉFAUT D9 – Faces d'étanchéité – Expertises et solutions.	146
Tableau 3.26. DÉFAUT D10 – Faces d'étanchéité – Expertises et solutions.	146
Tableau 3.27. DÉFAUT D11 – Faces d'étanchéité – Expertises et solutions.	147
Tableau 3.28. DÉFAUT D12 – Faces d'étanchéité – Expertises et solutions.	147
Tableau 3.29 – DÉFAUT D13 – Faces d'étanchéité – Expertises et solutions.	148
Tableau 3.30. DÉFAUT D14 – Faces d'étanchéité – Expertises et solutions	148
Tableau 3.31. DÉFAUT D15 – Faces d'étanchéité – Expertises et solutions	149
Tableau 3.32. DÉFAUT D16 – Joint secondaire – Expertises et solutions.	150
Tableau 3.33. DÉFAUT D17 – Joint secondaire – Expertises et solutions.	150
Tableau 3.34. DÉFAUT D18 – Joint secondaire – Expertises et solutions	150
Tableau 3.35. DÉFAUT D19 – Joint secondaire – Expertises et solutions.	151
Tableau 3.36. DÉFAUT D20 – Joint secondaire – Expertises et solutions	151

Tableau 3.37. DÉFAUT D21 – Soufflet ou membrane – Expertises	
et solutions.	151
Tableau 3.38.Tolérances de montage.	153
Tableau 3.39. Exemple type d'un cahier des charges pour la détermination d'une GM.	157

Avant-propos

De tout temps l'industrie est confrontée aux problèmes d'étanchéité des turbomachines dans la zone des traversées d'arbres. Le challenge est de taille car il s'agit de préserver la pression du fluide à véhiculer et de contenir la fuite vers l'extérieur pour des raisons de sécurité mais également économiques. Ce challenge a nécessité le développement de dispositifs d'étanchéité rotodynamiques dont les premiers balbutiements remontent au début du XIX^e siècle. Ces dispositifs n'ont cessé de progresser depuis d'une façon exponentielle au gré des besoins de plus en plus contraignants de l'industrie.

Il est cependant intéressant de noter que des solutions isolées faisant abstraction de dispositifs d'étanchéité rotodynamiques ont été développées et mises en œuvre notamment dans l'industrie nucléaire, dans les sous-marins à propulsion nucléaire et dans l'industrie chimique. Citons l'exemple typique de la pompe primaire de la première centrale nucléaire française à vocation commerciale de la filière REP de Chooz A (305 MWe – mise en service en 1967 et fermée en 1991). La particularité technologique de cette pompe est d'inclure le moteur d'entraînement au sein même de l'enceinte sous pression, les étanchéités sont alors purement statiques. La Figure 0.1 donne une idée de la technologie adoptée.

Figure 0.1. Pompe primaire à rotor noyé de la centrale à eau pressurisée de Chooz A.

Au gré de l'augmentation des puissances des réacteurs (de 900 MWe pour les premiers paliers à 1 630 MWe pour l'EPR), les moteurs des pompes primaires ont dû être sortis de l'enceinte sous pression pour que l'on puisse inclure un volant d'inertie destiné à assurer un temps d'arrêt suffisant des pompes en cas de perte incidentelle des sources électriques. Cette contrainte a nécessité l'intégration d'un dispositif d'étanchéité rotodynamique très évolué dont un des principaux composants fait ici l'objet du Chapitre 2.

Une autre idée de solution sans l'apport d'un dispositif d'étanchéité rotodynamique est l'utilisation d'un accouplement magnétique qui permet d'isoler complètement l'arbre moteur de l'arbre récepteur côté enceinte sous pression. Cette solution est décrite dans son principe dans la Figure 0.2.

Figure 0.2. Accouplement magnétique.

Comme le montre cette figure, l'accouplement magnétique, ici à flux radial et à aimants permanents, se compose principalement de :

- un moyeu interne solidaire de l'arbre récepteur équipé d'aimants permanents ;
- un capot amagnétique fermant l'enceinte sous pression ;
- un moyeu externe solidaire de l'arbre moteur et également équipés d'aimants permanents.

Notons qu'il existe également des solutions à flux axial via des plateaux en vis-à-vis et des dispositifs à induction.

Dans les faits, les dispositifs d'étanchéité rotodynamiques comportent plusieurs variantes en fonction des applications que nous caractérisons ici à l'aide d'un descripteur dédié noté produit PV (pression à étancher x vitesses de glissement). Pour ne citer que les principales d'entre elles, notons (J. Martin) :

- les joints radiaux de type : O-Ring en élastomère (PV : 10 bar.m/s), des joints à lèvre associant un élément primaire en élastomère et une armature en acier (PV : 15 bar.m/s), des joints composites associant un O-Ring en élastomère et une bague de glissement à base de PTFE (PV : 20 bar.m/s), les anneaux associant carbone et bronze (PV : 25 bar.m/s);
- les joints axiaux de type : joint en V en élastomère (PV : 10 bar.m/s).

Ou plus complexes et plus performants tels que les joints utilisés sur les pompes des centrales nucléaires :

- les joints radiaux de type presse-étoupe (PV de l'ordre de 100 bar.m/s) ou garniture mécanique radiale pour les grands diamètres ;
- les joints axiaux de type garnitures mécaniques axiales (PV pouvant dépasser 3 000 bar.m/s) ou joints hydrostatiques sans contact entre les faces d'étanchéité (PV maxi > 6 000 bar.m/s).

Ces exemples nous conduisent aux thèmes que nous allons développer ici. Ils portent en effet sur les principaux dispositifs d'étanchéité rotodynamiques les plus utilisés dans des industries très variées dont, et non des moindres, les centrales de production nucléaire un peu partout dans le monde dont EDF. Il s'agit dans l'ordre :

- chapitre 1 : des garnitures à tresses également connues sous le nom de presse-étoupe qui est un clin d'œil à leur origine qui remonte au début du XIX^e siècle (« presser » des « étoupes » autour de l'arbre). Malgré leur ancienneté elles continuent à être utilisées sans discontinuer grâce au progrès incessant dont elles ont bénéficié notamment dans le domaine des matériaux. Les presse-étoupe restent notamment les dispositifs d'étanchéité les plus utilisés dans la robinetterie ;
- chapitre 2 : des joints hydrostatiques qui constituent notamment le cœur de l'étanchéité rotodynamique de la plupart des pompes primaires des centrales nucléaires dans le monde. Ces joints jouent un rôle de premier ordre sur la sûreté et la disponibilité des installations ;
- chapitre 3 : des garnitures mécaniques axiales à faces frottantes, utilisées à grande échelle sur plusieurs types de turbomachines et en particulier les

pompes. C'est notamment la technologie de joints rotodynamiques la plus utilisée les pompes des centrales nucléaires, y compris les pompes primaires car ces joints viennent compléter en série les joints hydrostatiques que nous venons de citer.

Pour chacun de ces dispositifs, nous allons passer en revue les points suivants :

- le principe de fonctionnement ;
- les composants principaux ;
- les mécanismes de fonctionnement, en nous attachant à les décrire à l'aide de modèles analytiques ciblés que nous illustrerons à chaque fois avec des applications numériques pour aider à situer les ordres de grandeur ;
- les matériaux utilisés d'extrême importance car mis à part les joints hydrostatiques, qui fonctionnent sans contact (ce qui ne les empêche pas d'être équipés de matériaux mécaniquement « nobles »), ces dispositifs mettent en scène des frottements lubrifiés ou secs, en cas d'incident, au sein de l'interface d'étanchéité. Et qui dit frottement dit dégagement de chaleur qu'il faut évacuer facilement vers l'extérieur des faces, ce qui suppose une bonne conductivité thermique des matériaux ;
- la puissance ainsi dissipée doit à son tour être évacuée des chambres d'étanchéité pour maintenir la zone d'étanchéité à une température acceptable et ainsi éviter tout risque de déformations thermomécaniques excessives des composants fonctionnels et de vaporisation du fluide dans l'interface d'étanchéité. Ce refroidissement est réalisé par des apports de réfrigérants venant soit du fluide de procédé lui-même et, au besoin, refroidi, soit de l'extérieur, les surfaces d'échange et la masse des composants jouent un rôle de premier ordre dans ce processus. Des dispositions spécifiques sont ainsi prises pour garantir au mieux cette dissipation. Nous passerons en revue les différentes solutions mises en œuvre en fonction des applications;
- pour cause de fluide de procédé dangereux ou chargé en particules, des dispositions spécifiques sont prises pour en minimiser l'impact sur l'intégrité de l'étanchéité. Nous évoquerons les différentes solutions utilisables;
- pour les dispositifs d'étanchéité qui font intervenir des faces frottantes, des dégradations pouvant conduire à leur défaillance fonctionnelle peuvent se manifester. Nous passerons en revue les types de dégradation les plus courants et donnerons des indications sur leurs causes ainsi que sur les solutions potentiellement curatives;
- afin de minimiser les dégradations, des précautions élémentaires doivent être prises avec notamment un cahier des charges le plus précis possible pour bien cibler la technologie qui convient le mieux à l'application et, non des moindres, le respect des procédures de montage. Ces deux aspects seront abordés dans leur principe.

COLLECTION EDF R&D

Léon Joseph Randrianarivo est un Ingénieur Chercheur Expert en retraite du Département Mécaniques des Fluides, Energies et Environnement d'EDF Lab – Chatou. Il avait en charge des activités de R&D sur les composants mécaniques des principaux groupes de pompage des centrales nucléaires EDF. Un pan important de ses activités avait porté sur des études expérimentales et théoriques sur le comportement normal et accidentel des systèmes d'étanchéité des pompes de circulation du fluide caloporteur, dites pompes primaires, et des pompes de sauvegarde utilisées en cas d'accident.

Le confinement des turbomachines est réalisé avec des joints rotodynamiques. Ceux qui font l'objet de cet ouvrage sont les presse-étoupe (encore largement utilisés malgré leur ancienneté), les joints hydrostatiques (utilisés à grande échelle sur les pompes primaires des centrales nucléaires dans le monde) et les garnitures mécaniques (d'une utilisation désormais courante dans l'industrie).

L'étanchéité par presse-étoupe est réalisée par des tresses disposées dans un boîtier en sortie d'arbre et comprimées autour de ce dernier. La répartition des pressions latérales autour de l'arbre et du boîtier est décrite par des modèles analytiques. Ces modèles permettent notamment l'optimisation du nombre de tresses. Les matériaux utilisés sont présentés, ainsi que les différents types de montage, en fonction des applications. Un recueil des principaux défauts est proposé ainsi que les remèdes associés.

Les joints hydrostatiques des pompes primaires sont à très fort enjeu sûreté et disponibilité des installations. Leur perte peut en effet conduire à une brèche du circuit primaire et leur anomalie de fonctionnement en exploitation, à un arrêt fortuit de la centrale. Ils comportent une partie flottante solidaire du carter et une partie tournante solidaire de l'arbre. Ces deux parties sont écartées l'une de l'autre de 10 µm environ. Des modèles analytiques développés à partir des équations de Navier-Stokes en solide indéformable sont proposés pour décrire leur physique de fonctionnement. Pour tenir compte de la déformabilité inévitable des composants, un algorithme d'approche inverse est proposé en s'aidant des valeurs lues en salle de contrôle. Cet algorithme permet de construire un modèle du joint en exploitation à l'état sain et d'identifier, en termes de tendance, les éventuels défauts rencontrés en fonctionnement.

Les garnitures mécaniques présentées ici sont dites axiales à faces frottantes. L'une des faces est flexible et l'autre est fixe. Les mécanismes de fonctionnement sont décrits par des modèles analytiques en fonction du mésalignement éventuel des faces. Pour évaluer la fuite, les régimes de lubrification *via* la fuite sont mis à contribution et une démarche de délimitation de la fuite est proposée. Les arrangements de montage des garnitures mécaniques en fonction des applications sont décrits. Enfin, un recueil des principaux défauts est proposé ainsi que les remèdes associés.

