
BRUCE ALEXANDER JULIAN DAVID MARTIN KEITH PETER
ALBERTS JOHNSON LEWIS MORGAN RAFF ROBERTS WALTER

Biologie moléculaire de LA ELLLE

Sixième édition

Chez le même éditeur

Culture de cellules animales, 3^e édition, par G. Barlovatz-Meimon et X. Ronot

Biochimie, 7^e édition, par J. M. Berg, J. L. Tymoczko, L. Stryer

L'essentiel de la biologie cellulaire, 3^e édition, par B. Alberts, D. Bray, K. Hopkin, A. Johnson, A. J. Lewis, M. Raff, K. Roberts et P. Walter

Immunologie, par L. Chatenoud et J.-F. Bach

Génétique moléculaire humaine, 4º édition, par T. Strachan et A. Read

Manuel de poche de biologie cellulaire, par H. Plattner et J. Hentschel

Manuel de poche de microbiologie médicale, par F. H. Kayser, E. C. Böttger, P. Deplazes, O. Haller, A. Roers

Atlas de poche de génétique, par E. Passarge

Atlas de poche de biotechnologie et de génie génétique, par R.D. Schmid

Les biosimilaires, par J.-L. Prugnaud et J.-H. Trouvin

Bio-informatique moléculaire: une approche algorithmique (Coll. IRIS), par P. A. Pevzner et N. Puech

Cycle cellulaire et cytométrie en flux, par D. Grunwald, J.-F. Mayol et X. Ronot

La cytométrie en flux, par X. Ronot, D. Grunwald, J.-F. Mayol et J. Boutonnat

L'évolution biologique au xxI^e siècle : Les faits, les théories, par R. Dajoz

Biologie de l'évolution et médecine (Coll. Monographies), par C. Frelin et B. Swynghedauw

Pour plus d'informations sur nos publications :

Biologie moléculaire de LA CELLULE

Sixième édition

Bruce Alberts
Alexander Johnson
Julian Lewis
David Morgan
Martin Raff
Keith Roberts
Peter Walter

Traduit de l'américain par

Michel Darmon

Docteur en Médecine, Docteur ès Sciences Ancien Professeur des Universités-Praticien hospitalier

À propos des auteurs

Bruce Alberts a reçu son doctorat (PhD) de l'Université Harvard et il est Chancellor's Leadership Chair in Biochemistry and Biophysics for Science and Education, Université de Californie, San Francisco. Il a été le rédacteur en chef du magazine Science de 2008 à 2013, et pendant douze ans Président de la U.S. National Academy of Sciences (1993-2005). Alexander Johnson a reçu son doctorat (PhD) de l'Université Harvard et il est Professeur de Microbiologie et d'Immunologie à l'Université de Californie, San Francisco. Julian Lewis (1946-2014) a reçu son doctorat (DPhil) de l'Université d'Oxford et était Emeritus Scientist au London Research Institute of Cancer Research UK. David Morgan a reçu son doctorat (PhD) de l'Université de Californie, San Francisco, et il y est Professeur au Département de Physiologie, ainsi que Directeur du Biochemistry, Cell Biology, Genetics, and Developmental Biology Graduate Program. Martin Raff reçu son doctorat en médecine (MD) de l'Université McGill et est Emeritus Professor of Biology au Medical Research Council Laboratory for Molecular Cell Biology at University College London. Keith Roberts a reçu son doctorat (PhD) de l'University of East Anglia. Peter Walter a reçu son doctorat (PhD) de l'Université Rockefeller à New York et est Professeur au Département de Biochimie et de Biophysique de l'Université de Californie, San Francisco, et aussi Investigator au Howard Hughes Medical Institute.

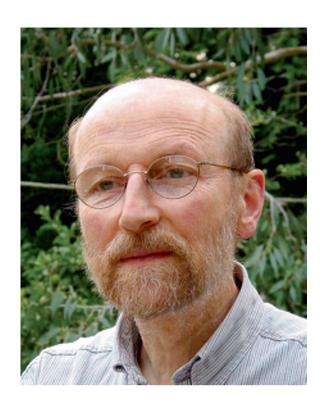
Illustration de couverture : La biologie cellulaire n'a pas seulement à voir avec la structure et la fonction des myriades de molécules qui forment la cellule, mais aussi avec la façon dont cette chimie complexe est contrôlée. Comprendre la régulation élaborée des réseaux et de leurs rétroactions dans la cellule exigera des approches quantitatives.

Ce livre contient des informations issues de sources authentiques et reconnues. Tous les efforts ont été faits pour identifier les titulaires de droits d'auteur et obtenir l'autorisation d'utiliser du matériel protégé par le droit d'auteur. Le matériel reproduit est cité avec autorisation, et les sources sont indiquées. Un grand nombre de références sont listées. Tous les efforts ont été faits pour publier des données et des informations fiables, mais les auteurs et l'éditeur ne peuvent pas être tenus pour responsables de la validité de tout le matériel ou des conséquences de son usage.

Cet ouvrage est paru dans son édition américaine sous le titre :

Molecular Biology of the Cell, Sixth edition.

© 2015 by Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter Walter.


All rights reserved.

Authorized translation from the English language edition published by: Garland Science, part of Taylor & Francis Group LLC.

1986, 1^{re} édition 1990, 2^e édition 1995, 3^e édition 2004, 4^e édition 2011, 5^e édition 2017, 6^e édition

> Direction Département Livres : Emmanuel Leclerc Édition : Brigitte Peyrot Relecture : Clément Delire, Alexis Antoine Couverture : Isabelle Godenèche

Composition: Nord-Compo, Villeneuve-d'Ascq

Julian Hart Lewis
12 août 1946 – 30 avril 2014

Préface

Depuis la dernière édition de ce livre, plus de cinq millions d'articles scientifiques ont été publiés. Il y a eu une augmentation parallèle de la quantité d'information numérique : de nouvelles données sur les séquences génomiques, les interactions entre protéines, les structures moléculaires et l'expression des gènes, toutes stockées dans de vastes bases de données. Le défi, pour les scientifiques et les auteurs de manuels, est de convertir cette énorme quantité d'informations en une compréhension et une connaissance accessibles et actuelles de la façon dont les cellules fonctionnent.

Une aide est apportée par la forte augmentation du nombre d'articles de revues qui tentent de rendre les données brutes plus faciles à assimiler, bien que la grande majorité de ces revues soient encore très ciblées. D'autre part, une collection en croissance rapide de ressources en ligne essaie de nous convaincre que la connaissance n'est qu'à quelques clics de souris de nous. Dans certains domaines, ce changement dans la façon dont nous accédons aux connaissances a été couronné de succès, par exemple pour obtenir des informations sur nos propres problèmes médicaux. Mais pour comprendre quelque chose à la beauté et à la complexité de la manière dont les cellules vivantes fonctionnent, il faut plus qu'un wiki-ci ou un wiki-ça ; en effet il est extrêmement difficile d'identifier les pierres précieuses et durables dans tant de données confuses et parfois trompeuses. Un récit soigneusement forgé est beaucoup plus efficace car il parcourt logiquement et progressivement les idées principales, les composants essentiels et les expériences décisives d'une manière telle que les lecteurs peuvent construire par eux-mêmes un cadre conceptuel mémorisable de la biologie cellulaire - cadre qui leur permettra d'évaluer de façon critique toutes les nouveautés de la science et, plus important encore, de les comprendre. Voilà ce que nous avons essayé de faire dans Biologie Moléculaire de la Cellule.

Au cours de la préparation de cette nouvelle édition, nous avons inévitablement dû prendre des décisions difficiles. Afin d'intégrer de nouvelles découvertes passionnantes, tout en gardant le livre portable, beaucoup de choses ont dû être supprimées. Nous avons ajouté de nouvelles parties, comme celles sur les nouvelles fonctions de l'ARN, les progrès de la biologie des cellules souches, les nouvelles méthodes pour étudier les protéines et les gènes et pour l'imagerie des cellules, les progrès de la génétique et du traitement du cancer, et le calendrier, le contrôle de la croissance et la morphogenèse dans le développement.

La chimie des cellules est extrêmement complexe, et toute liste des parties des cellules et de leurs interactions – peu importe sa longueur – laisserait d'énormes lacunes dans notre compréhension. Nous savons maintenant que, pour donner des explications convaincantes sur le comportement cellulaire, il faudra disposer d'informations quantitatives sur les cellules et que celles-ci soient couplées à des approches mathématiques/informatiques sophistiquées – certaines pas encore inventées. Par conséquent, un objectif émergent pour les biologistes cellulaires est de déplacer leurs études vers encore plus de description quantitative et de déduction mathématique. Nous soulignons cette approche et certaines de ses méthodes dans une nouvelle partie à la fin du Chapitre 8.

Face à l'immensité de ce que nous avons appris sur la biologie cellulaire, il peut être tentant pour un étudiant d'imaginer qu'il y a peu de choses à découvrir. En fait, plus nous découvrons de choses sur les cellules, plus de nouvelles questions émergent. Pour souligner que notre compréhension de la biologie cellulaire est incomplète, nous avons mis en évidence certaines des principales lacunes dans nos connaissances en incluant *Ce que nous ne savons pas* à la fin de chacun des chapitres. Ces brèves listes ne comprennent qu'un petit échantillon des questions et des défis sans réponse qui seront fondamentaux pour la prochaine génération de scientifiques. Nous tirons un grand plaisir de savoir que certains de nos lecteurs apporteront des réponses dans le futur.

Plus de 1500 illustrations ont été conçues pour créer un récit parallèle, étroitement imbriqué au texte. Nous avons augmenté leur cohérence entre les chapitres, en particulier en utilisation des couleurs et des icônes communes ; les pompes membranaires et les

canaux sont un bon exemple. Pour éviter des interruptions dans le texte, certaines données ont été déplacées dans de nouvelles planches, facilement accessibles. La plupart des structures protéiques importantes décrites ont été redessinées et colorées de façon plus cohérente. Dans chaque cas, nous fournissons maintenant pour la protéine le code correspondant de la Protein Data Bank (PDB), qui peut être utilisé pour accéder aux outils en ligne apportant plus d'informations sur la protéine, tels que ceux du site web RCSB PDB (www.rcsb.org). Ces connexions permettent aux lecteurs du livre d'explorer plus en détail les protéines qui se trouvent au cœur de la biologie cellulaire.

Nous vivons dans un monde qui nous pose de nombreuses questions complexes liées à la biologie cellulaire : la biodiversité, le changement climatique, la sécurité alimentaire, la dégradation de l'environnement, l'épuisement des ressources, les maladies humaines. Nous espérons que notre livre aidera le lecteur à mieux comprendre ces défis et peut-être à contribuer à les relever. La connaissance et la compréhension apportent le pouvoir d'intervenir.

Nous sommes redevables à un grand nombre de scientifiques dont nous mentionnons l'aide généreuse séparément dans des remerciements détaillés. Ici, nous devons citer quelques contributeurs particulièrement importants. Pour le Chapitre 8, Hana El-Samad a fourni la base de la partie sur l'analyse mathématique des fonctions cellulaires, et Karen Hopkin a apporté une contribution précieuse à la partie sur l'étude de l'expression et de la fonction des gènes. Werner Kuhlbrandt a aidé à réorganiser et à réécrire le Chapitre 14 (Conversion de l'énergie : mitochondries et chloroplastes). Rebecca Heald a fait de même pour le Chapitre 16 (Le cytosquelette), Alexander Schier pour le Chapitre 21 (Développement des organismes multicellulaires), et Matt Welch pour le Chapitre 23 (Les pathogènes et les infections). Lewis Lanier a aidé à la rédaction du Chapitre 24 (Les systèmes immunitaires inné et adaptatif). Hossein Amiri a généré l'énorme banque de questions des enseignants en ligne.

Avant de commencer le cycle de révisions nécessaire à cette édition, nous avons demandé à un certain nombre de scientifiques qui avaient utilisé la dernière édition pour enseigner aux étudiants de biologie cellulaire de nous rencontrer et de proposer des améliorations. Ils nous ont apporté un retour utile qui a contribué à la refonte de la nouvelle édition. Nous avons également bénéficié de l'apport précieux des groupes d'étudiants qui ont lu la plupart des chapitres en épreuves.

Beaucoup de gens et beaucoup d'efforts sont nécessaires pour convertir un long manuscrit et un gros tas de croquis en un manuel fini. L'équipe de Garland Science qui a réussi cette conversion a été exceptionnelle. Denise Schanck, à la direction des opérations, a montré de la patience, de la tolérance, de la perspicacité, du tact et de l'énergie, tout au long du voyage ; elle nous a guidés tous infailliblement, bien secondée par Allie Bochicchio et Janette Scobie. Nigel Orme a supervisé notre programme d'illustrations remanié, a mis tous les dessins dans leur forme finale, et encore amélioré la quatrième de couverture avec ses compétences graphiques. Tiago Barros nous a aidé à rafraîchir notre présentation des structures des protéines. Matthew McClements a conçu le livre et la première de couverture. Emma Jeffcock a revu la présentation des pages, en gérant l'interminable ronde des épreuves et des changements de dernière minute avec une habileté et une patience remarquables; Georgina Lucas lui a fourni de l'aide. Michael Morales, assisté de Leah Christians, a produit et assemblé le réseau complexe des matériaux qui forme le cœur des ressources en ligne qui accompagnent le livre. Adam Sendroff nous a fourni les précieux commentaires des utilisateurs du livre du monde entier qui nous ont été utiles pour notre cycle de révision. Par leur regard expert sur le manuscrit, Elizabeth Zayatz et Sherry Granum Lewis ont joué le rôle de rédacteurs de développement, Jo Clayton de relecteur et Sally Huish de correcteur. Bill Johncocks a compilé l'index. À Londres, Emily Preece nous a littéralement nourris, tandis que l'aide professionnelle, les compétences et l'énergie de l'équipe Garland, ainsi que leur amitié, nous a nourris dans tous les autres sens du terme tout au long de la révision, ce qui a fait de l'ensemble du processus un véritable plaisir. Les auteurs sont extrêmement chanceux d'être soutenus si généreusement.

Nous remercions nos conjoints, familles, amis et collègues pour leur soutien continu, qui a une fois de plus rendu l'écriture de ce livre possible.

Alors que nous achevions cette édition, Julian Lewis, notre co-auteur, ami et collègue, a finalement succombé au cancer qu'il avait combattu héroïquement pendant dix ans. À partir de 1979, Julian a donné d'importantes contributions à l'ensemble des six éditions, et, étant parmi nous la plus belle plume, il a élevé et amélioré à la fois le style et le ton des nombreux chapitres qu'il touchait. Son approche scientifique minutieuse, sa clarté et sa simplicité étaient au cœur de son écriture. Julian est irremplaçable, et nous regrettons tous profondément son amitié et sa collaboration. Nous dédions cette sixième édition à sa mémoire.

Note au lecteur

Structure du livre

Bien que les chapitres de ce livre puissent être lus indépendamment les uns des autres, ils sont disposés selon un ordre logique en cinq parties. Les trois premiers chapitres de la Partie I couvrent les principes élémentaires et fondamentaux de la biochimie. Ils peuvent servir soit d'introduction pour ceux qui n'ont pas étudié la biochimie, soit de cours de recyclage pour ceux qui l'ont étudiée. La Partie II traite du stockage, de l'expression et de la transmission de l'information génétique. La Partie III présente les principes des méthodes expérimentales les plus importantes pour examiner et analyser les cellules ; là, une nouvelle section intitulée « Analyse mathématique des fonctions des cellules » dans le Chapitre 8 donne une dimension supplémentaire à notre compréhension de la régulation et de la fonction de la cellule. La Partie IV décrit l'organisation interne de la cellule. La Partie V suit le comportement des cellules dans les systèmes multicellulaires, en commençant par le développement des organismes multicellulaires et en concluant par les chapitres sur les organismes pathogènes et l'infection, et sur les systèmes immunitaires inné et adaptatif.

Références

Une liste concise de références sélectionnées est incluse à la fin de chaque chapitre. Celles-ci sont classées par ordre alphabétique, sous les principaux titres des sections du chapitre. Ces références incluent parfois les articles originaux dans lesquels des découvertes importantes ont été rapportées pour la première fois.

Glossaire

Tout au long du livre, des caractères gras ont été utilisés pour souligner les termes clés dans l'endroit précis du chapitre où ils sont décrits et discutés en priorité. Les caractères en italiques sont utilisés pour signaler les termes importants, mais avec un moindre degré d'accentuation. À la fin du livre on trouvera un glossaire étendu couvrant les termes techniques de biologie cellulaire ; il doit être le premier recours du lecteur lors de la rencontre d'un terme inconnu.

Nomenclature des gènes et des protéines

Chaque espèce a ses propres conventions de dénomination des gènes ; la seule caractéristique commune est qu'ils sont toujours en italique. Chez certaines espèces (comme l'homme), les noms de gènes sont tous écrits en lettres capitales ; chez d'autres espèces (comme le poisson zèbre), tous en minuscules ; chez d'autres encore (la plupart des gènes de souris), avec la première lettre en majuscule et le reste en minuscules ; ou, comme chez la drosophile (*Drosophila*), avec différentes combinaisons de majuscules et de minuscules, selon que le premier allèle mutant à être découvert a produit un phénotype dominant ou récessif. Les conventions de dénomination des protéines sont également variées.

Ce chaos typographique énerve tout le monde. Il est non seulement fastidieux et absurde, il est également impossible à employer. Nous ne pouvons pas définir indépendamment une convention nouvelle pour chacune des quelque millions d'espèces prochaines dont nous pouvons souhaiter étudier les gènes. En outre, il existe de nombreuses occasions, en particulier dans un livre comme celui-ci, où nous avons besoin de faire référence à un gène génériquement – sans spécifier la version de la souris, la version humaine, la version de la poule, ou la version de l'hippopotame – parce qu'ils sont tous équivalents pour les fins de notre discussion. Quelle convention devons-nous donc utiliser ?

Nous avons décidé dans ce livre de mettre de côté les différentes conventions qui sont utilisées dans les espèces individuelles et de suivre une règle uniforme : nous écrivons tous les noms de gènes, comme les noms des personnes et des lieux, avec la première lettre en majuscule et le reste en minuscules, mais tous en italique, ainsi : *Apc, Bazooka, Cdc2, Dishevelled, Egl1*. La protéine correspondante, quand elle est nommée d'après le gène, sera écrite de la même manière, mais en caractères romains plutôt qu'en lettres italiques : Apc, Bazooka, Cdc2, Dishevelled, Egl1. Quand il est nécessaire de préciser l'organisme, cela peut être fait avec un adjectif ou un préfixe devant le nom de gène.

Pour être complet, nous faisons la liste de quelques autres détails des règles de nomenclature que nous allons suivre. Dans certains cas, une lettre ajoutée au nom du gène est traditionnellement utilisée pour distinguer entre les gènes liés par la fonction ou par l'évolution; pour ces gènes, nous mettons cette lettre en majuscule s'il est habituel de le faire (LacZ, RecA, HoxA4). Nous n'utilisons pas de trait d'union pour séparer les lettres ou les chiffres ajoutés dans le reste du nom. Les protéines posent un problème plus sérieux. Beaucoup d'entre elles ont leur propre nom, qui leur a été attribué avant que le gène n'ait été nommé. Ces noms de protéines ont de nombreuses formes, bien que la plupart d'entre eux commencent traditionnellement par une lettre minuscule (actine, hémoglobine, catalase), comme les noms des substances ordinaires (fromage, nylon), à moins qu'ils soient des acronymes (comme GFP, pour Green Fluorescent Protein ou BMP4, pour Bone Morphogenetic Protein #4). Présenter tous ces noms de protéines en un style uniforme ferait trop de violence aux usages établis, et nous les écrirons tout simplement de manière traditionnelle (actine, GFP, et ainsi de suite). Pour les noms de gènes correspondant à tous ces cas, nous avons néanmoins suivi une règle standard : Actine, Hémoglobine, Catalase, Bmp4, Gfp. De temps en temps dans notre livre, nous devons mettre en évidence un nom de protéine en la mettant en italique pour accentuer son utilisation dans la phrase ; l'intention sera généralement claire d'après le contexte.

Pour ceux qui souhaitent les connaître, le tableau ci-dessous montre quelques-unes des conventions officielles pour les espèces individuelles – conventions que nous allons la plupart du temps violer dans cet ouvrage, de la manière représentée.

	Convention spécifique	e des espèces	Convention unifié	ée utilisée dans ce livre
	Gène	Protéine	Gène	Protéine
Souris	Hoxa4	Hoxa4	Ноха4	Hoxa4
	Bmp4	BMP4	Bmp4	BMP4
	intégrine α-1, Itgα1	intégrine α1	Integrin α1, Itgα1	intégrine α1
Homme	HOXA4	HOXA4	HoxA4	HoxA4
Poisson zèbre	cyclops, cyc	Cyclops, Cyc	Cyclops, Cyc	Cyclope, Cyc
Caenorhabditis	unc-6	UNC-6	Unc6	Unc6
Drosophila	sevenless, sev (nommé d'après le phénotype récessif)	Sevenless, SEV	Sevenless, Sev	Sevenless, Sev
	Deformed, Dfd (nommé d'après le phénotype mutant dominant)	Deformed, DFD	Deformed, Dfd	Deformed, Dfd
Levure				
Saccharomyces cerevisiae (levure bourgeonnante)	CDC28	Cdc28, Cdc28p	Cdc28	Cdc28
Schizosaccharomyces pombe (levure de fission)	Cdc2	Cdc2, Cdc2p	Cdc2	Cdc2
Arabidopsis	GAI	GAI	Gai	GAI
E. coli	uvrA	UvrA	UvrA	UvrA

RESSOURCES POUR LES ENSEIGNANTS ET LES ÉTUDIANTS

Des ressources d'enseignement et d'étude pour les enseignants et les étudiants sont disponibles en ligne, en langue anglaise. Les ressources pour enseignants sont protégées par un mot de passe et sont disponibles uniquement aux enseignants enregistrés. Les enseignants enregistrés peuvent obtenir l'accès au site par le représentant des ventes ou par courriel à science@garland.com. Les ressources pour étudiants sont disponibles à tous.

Sites: www.garlandscience.com/instructors; www.garlandscience.com/MBOC6-students.

Remerciements

En écrivant ce livre, nous avons grandement bénéficié de l'avis de nombreux biologistes et biochimistes. Nous tenons à remercier les personnes suivantes pour leurs suggestions dans la préparation de cette édition, ainsi que celles qui ont aidé à la préparation des première, deuxième, troisième, quatrième et cinquième éditions. (Ceux qui ont contribué à cette édition sont énumérés d'abord, ceux qui ont aidé à la première, deuxième, troisième, quatrième et cinquième éditions suivent.)

Généraux:

Steven Cook (Imperial College London), Jose A. Costova (Universidade de Santiago de Compostela), Arshad Desai (University of California, San Diego), Susan K. Dutcher (Washington University, St. Louis), Michael Elowitz (California Institute of Technology), Benjamin S. Glick (University of Chicago), Gregory Hannon (Cold Spring Harbor Laboratories), Rebecca Heald (University of California, Berkeley), Stefan Kanzok (Loyola University Chicago), Doug Kellogg (University of California, Santa Cruz), David Kimelman (University of Washington, Seattle), Maria Krasilnikova (Pennsylvania State University), Werner Kühlbrandt (Max Planck Institute of Biophysics), Lewis Lanier (University of California, San Francisco), Annette Müller-Taubenberger (Ludwig Maximilians University), Sandra Schmid (University of Texas Southwestern), Ronald D. Vale (University of California, San Francisco), D. Eric Walters (Chicago Medical School), Karsten Weis (Swiss Federal Institute of Technology)

Chapitre 2: H. Lill (VU University)

Chapitre 3: David S. Eisenberg (University of California, Los Angeles), F. Ulrich Hartl (Max Planck Institute of Biochemistry), Louise Johnson (University of Oxford), H. Lill (VU University), Jonathan Weissman (University of California, San Francisco)

Chapitre 4: Bradley E. Bernstein (Harvard Medical School), Wendy Bickmore (MRC Human Genetics Unit, Edinburgh), Jason Brickner (Northwestern University), Gary Felsenfeld (NIH), Susan M. Gasser (University of Basel), Shiv Grewal (National Cancer Institute), Gary Karpen (University of California, Berkeley), Eugene V. Koonin, (NCBI, NLM, NIH), Hiten Madhani (University of California, San Francisco), Tom Misteli (National Cancer Institute), Geeta Narlikar (University of California, San Francisco), Maynard Olson (University of Washington, Seattle), Stephen Scherer (University of Toronto), Rolf Sternglanz (Stony Brook University), Chris L. Woodcock (University of Massachusetts, Amherst), Johanna Wysocka and lab members (Stanford School of Medicine)

Chapitre 5: Oscar Aparicio (University of Southern California), Julie P. Cooper (National Cancer Institute), Neil Hunter (Howard Hughes Medical Institute), Karim Labib (University of Manchester), Joachim Li (University of California, San Francisco), Stephen West (Cancer

Research UK), Richard D. Wood (University of Pittsburgh Cancer Institute)

Chapitre 6: Briana Burton (Harvard University), Richard H. Ebright (Rutgers University), Daniel Finley (Harvard Medical School), Michael R. Green (University of Massachusetts Medical School), Christine Guthrie (University of California, San Francisco), Art Horwich (Yale School of Medicine), Harry Noller (University of California, Santa Cruz), David Tollervey (University of Edinburgh), Alexander J. Varshavsky (California Institute of Technology) Chapitre 7: Adrian Bird (The Wellcome Trust Centre, UK), Neil Brockdorff (University of Oxford), Christine Guthrie (University of California, San Francisco), Jeannie Lee (Harvard Medical School), Michael Levine (University of California, Berkeley), Hiten Madhani (University of California, San Francisco), Duncan Odom (Cancer Research UK), Kevin Struhl (Harvard Medical School), Jesper Svejstrup (Cancer Research UK)

Chapitre 8: Hana El-Samad [major contribution] (University of California, San Francisco), Karen Hopkin [major contribution], Donita Brady (Duke University), David Kashatus (University of Virginia), Melanie McGill (University of Toronto), Alex Mogilner (University of California, Davis), Richard Morris (John Innes Centre, UK), Prasanth Potluri (The Children's Hospital of Philadelphia Research Institute), Danielle Vidaurre (University of Toronto), Carmen Warren (University of California, Los Angeles), Ian Woods (Ithaca College)

Chapitre 9: J. Douglas Briant (University of Victoria), Werner Kühlbrandt (Max Planck Institute of Biophysics), Jeffrey Lichtman (Harvard University), Jennifer Lippincott-Schwartz (NIH), Albert Pan (Georgia Regents University), Peter Shaw (John Innes Centre, UK), Robert H. Singer (Albert Einstein School of Medicine), Kurt Thorn (University of California, San Francisco)

Chapitre 10: Ari Helenius (Swiss Federal Institute of Technology), Werner Kühlbrandt (Max Planck Institute of Biophysics), H. Lill (VU University), Satyajit Mayor (National Centre for Biological Sciences, India), Kai Simons (Max Planck Institute of Molecular Cell Biology and Genetics), Gunnar von Heijne (Stockholm University), Tobias Walther (Harvard University)

Chapitre 11: Graeme Davis (University of California, San Francisco), Robert Edwards (University of California, San

Francisco), Bertil Hille (University of Washington, Seattle), Lindsay Hinck (University of California, Santa Cruz), Werner Kühlbrandt (Max Planck Institute of Biophysics), H. Lill (VU University), Roger Nicoll (University of California, San Francisco), Poul Nissen (Aarhus University), Robert Stroud (University of California, San Francisco), Karel Svoboda (Howard Hughes Medical Institute), Robert Tampé (Goethe-University Frankfurt)

Chapitre 12: John Aitchison (Institute for System Biology, Seattle), Amber English (University of Colorado at Boulder), Ralf Erdmann (Ruhr University of Bochum), Larry Gerace (The Scripps Research Institute, La Jolla), Ramanujan Hegde (MRC Laboratory of Molecular Biology, Cambridge, UK), Martin W. Hetzer (The Salk Institute), Lindsay Hinck (University of California, Santa Cruz), James A. McNew (Rice University), Nikolaus Pfanner (Université de Freiberg), Peter Rehling (Université de GöGöttingen), Michael Rout (The Rockefeller University), J. Danny Schnell (University of Massachusetts, Amherst), Sebastian Schuck (University of Heidelberg), Suresh Subramani (University of California, San Diego), Gia Voeltz (University of Colorado, Boulder), Susan R. Wente (Vanderbilt University School of Medicine) Chapitre 13: J. Douglas Briant (University of Victoria, Canada), Scott D. Emr (Cornell University), Susan Ferro-Novick (University of California, San Diego), Benjamin S. Glick (University of Chicago), Ari Helenius (Swiss Federal Institute of Technology), Lindsay Hinck (University of California, Santa Cruz), Reinhard Jahn (Max Planck Institute for Biophysical Chemistry), Ira Mellman (Genentech), Peter Novick (University of California, San Diego), Hugh Pelham (MRC Laboratory of Molecular Biology, Cambridge, UK), Graham Warren (Max F. Perutz Laboratories, Vienna), Marino Zerial (Max Planck Institute of Molecular Cell Biology and Genetics)

Chapitre 14: Werner Kühlbrandt [major contribution] (Max Planck Institute of Biophysics), Thomas D. Fox (Cornell University), Cynthia Kenyon (University of California, San Francisco), Nils-Göran Larsson (Max Planck Institute for Biology of Aging), Jodi Nunnari (University of California, Davis), Patrick O'Farrell (University of California, San Francisco), Alastair Stewart (The Victor Chang Cardiac Research Institute, Australia), Daniela Stock (The Victor Chang Cardiac Research Institute, Australia), Michael P. Yaffe (California Institute for Regenerative Medicine)

Chapitre 15: Henry R. Bourne (University of California, San Francisco), Dennis Bray (University of Cambridge),

San Francisco), Dennis Bray (University of Cambridge), Douglas J. Briant (University of Victoria, Canada), James Briscoe (MRC National Institute for Medical Research, UK), James Ferrell (Stanford University), Matthew Freeman (MRC Laboratory of Molecular Biology, Cambridge, UK), Alan Hall (Memorial Sloan Kettering Cancer Center), Carl-Henrik Heldin (Uppsala University), James A. McNew (Rice University), Roel Nusse (Stanford University), Julie Pitcher (University College London)

Chapitre 16: Rebecca Heald [major contribution] (University of California, Berkeley), Anna Akhmanova (Utrecht University), Arshad Desai (University of California, San Diego), Velia Fowler (The Scripps Research Institute, La Jolla), Vladimir Gelfand (Northwestern University), Robert Goldman (Northwestern University), Alan Rick Horwitz (University of Virginia), Wallace Marshall (University of California, San Francisco), J. Richard McIntosh (University of Colorado, Boulder), Maxence Nachury (Stanford School of

Medicine), Eva Nogales (University of California, Berkeley), Samara Reck-Peterson (Harvard Medical School), Ronald D. Vale (University of California, San Francisco), Richard B. Vallee (Columbia University), Michael Way (Cancer Research UK), Orion Weiner (University of California, San Francisco), Matthew Welch (University of California, Berkeley)

Chapitre 17: Douglas J. Briant (University of Victoria, Canada), Lindsay Hinck (University of California, Santa Cruz), James A. McNew (Rice University)

Chapitre 18: Emily D. Crawford (University of California, San Francisco), James A. McNew (Rice University), Shigekazu Nagata (Kyoto University), Jim Wells (University of California, San Francisco)

Chapitre 19: Jeffrey Axelrod (Stanford University School of Medicine), John Couchman (University of Copenhagen), Johan de Rooij (The Hubrecht Institute, Utrecht), Benjamin Geiger (Weizmann Institute of Science, Israel), Andrew P. Gilmore (University of Manchester), Tony Harris (University of Toronto), Martin Humphries (University of Manchester), Andreas Prokop (University of Manchester), Charles Streuli (University of Manchester), Masatoshi Takeichi (RIKEN Center for Developmental Biology, Japan), Barry Thompson (Cancer Research UK), Kenneth M. Yamada (NIH), Alpha Yap (The University of Queensland, Australia) Chapitre 20: Anton Berns (Netherlands Cancer Institute), J. Michael Bishop (University of California, San Francisco), Trever Bivona (University of California, San Francisco), Fred Bunz (Johns Hopkins University), Paul Edwards (University of Cambridge), Ira Mellman (Genentech), Caetano Reis e Sousa (Cancer Research UK), Marc Shuman (University of California, San Francisco), Mike Stratton (Wellcome Trust Sanger Institute, UK), Ian Tomlinson (Cancer Research UK) Chapitre 21: Alex Schier [major contribution] (Harvard University), Markus Affolter (University of Basel), Victor Ambros (University of Massachusetts, Worcester), James Briscoe (MRC National Institute for Medical Research, UK), Donald Brown (Carnegie Institution for Science, Baltimore), Steven Burden (New York University School of Medicine), Moses Chao (New York University School of Medicine), Caroline Dean (John Innes Centre, UK), Chris Doe (University of Oregon, Eugene), Uwe Drescher (King's College London), Gordon Fishell (New York University School of Medicine), Brigid Hogan (Duke University), Phil Ingham (Institute of Molecular and Cell Biology, Singapore), Laura Johnston (Columbia University), David Kingsley (Stanford University), Tom Kornberg (University of California, San Francisco), Richard Mann (Columbia University), Andy McMahon (University of Southern California), Marek Mlodzik (Mount Sinai Hospital, New York), Patrick O'Farrell (University of California, San Francisco), Duojia Pan (Johns Hopkins Medical School), Olivier Pourquie (Harvard Medical School), Erez Raz (University of Muenster), Chris Rushlow (New York University), Stephen Small (New York University), Marc Tessier-Lavigne (Rockefeller University)

Chapitre 22: Simon Hughes (King's College London), Rudolf Jaenisch (Massachusetts Institute of Technology), Arnold Kriegstein (University of California, San Francisco), Doug Melton (Harvard University), Stuart Orkin (Harvard University), Thomas A. Reh (University of Washington, Seattle), Amy Wagers (Harvard University), Fiona M. Watt (Wellcome Trust Centre for Stem Cell Research, UK), REMERCIEMENTS xiii

Douglas J. Winton (Cancer Research UK), Shinya Yamanaka (Kyoto University)

Chapitre 23: Matthew Welch [major contribution] (University of California, Berkeley), Ari Helenius (Swiss Federal Institute of Technology), Dan Portnoy (University of California, Berkeley), David Sibley (Washington University, St. Louis), Michael Way (Cancer Research UK) Chapitre 24: Lewis Lanier (University of California, San Francisco).

Lecteurs: Najla Arshad (Indian Institute of Science), Venice Chiueh (University of California, Berkeley), Quyen Huynh (University of Toronto), Rachel Kooistra (Loyola University, Chicago), Wes Lewis (University of Alabama), Eric Nam (University of Toronto), Vladislav Ryvkin (Stony Brook University), Laasya Samhita (Indian Institute of Science), John Senderak (Jefferson Medical College), Phillipa Simons (Imperial College, UK), Anna Constance Vind (University of Copenhagen), Steve Wellard (Pennsylvania State University), Evan Whitehead (University of California, Berkeley), Carrie Wilczewski (Loyola University, Chicago), Anna Wing (Pennsylvania State University), John Wright (University of Alabama)

Première, deuxième, troisième, quatrième et cinquième éditions :

Jerry Adams (The Walter and Eliza Hall Institute of Medical Research, Australia), Ralf Adams (London Research Institute), David Agard (University of California, San Francisco), Julie Ahringer (The Gurdon Institute, UK), Michael Akam (University of Cambridge), David Allis (The Rockefeller University), Wolfhard Almers (Oregon Health and Science University), Fred Alt (CBR Institute for Biomedical Research, Boston), Linda Amos (MRC Laboratory of Molecular Biology, Cambridge), Raul Andino (University of California, San Francisco), Clay Armstrong (University of Pennsylvania), Martha Arnaud (University of California, San Francisco), Spyros Artavanis-Tsakonas (Harvard Medical School), Michael Ashburner (University of Cambridge), Jonathan Ashmore (University College London), Laura Attardi (Stanford University), Tayna Awabdy (University of California, San Francisco), Jeffrey Axelrod (Stanford University Medical Center), Peter Baker (deceased), David Baldwin (Stanford University), Michael Banda (University of California, San Francisco), Cornelia Bargmann (The Rockefeller University), Ben Barres (Stanford University), David Bartel (Massachusetts Institute of Technology), Konrad Basler (University of Zurich), Wolfgang Baumeister (Max Planck Institute of Biochemistry), Michael Bennett (Albert Einstein College of Medicine), Darwin Berg (University of California, San Diego), Anton Berns (Netherlands Cancer Institute), Merton Bernfield (Harvard Medical School), Michael Berridge (The Babraham Institute, Cambridge, UK), Walter Birchmeier (Max Delbrück Center for Molecular Medicine, Germany), Adrian Bird (Wellcome Trust Centre, UK), David Birk (UMDNJ-Robert Wood Johnson Medical School), Michael Bishop (University of California, San Francisco), Elizabeth Blackburn (University of California, San Francisco), Tim Bliss (National Institute for Medical Research, London), Hans Bode (University of California, Irvine), Piet Borst (Jan Swammerdam Institute, University of Amsterdam), Henry Bourne (University of California, San Francisco), Alan Boyde (University College London), Martin Brand (University of Cambridge), Carl

Branden (deceased), Andre Brandli (Swiss Federal Institute of Technology, Zurich), Dennis Bray (University of Cambridge), Mark Bretscher (MRC Laboratory of Molecular Biology, Cambridge), James Briscoe (National Institute for Medical Research, UK), Marianne Bronner-Fraser (California Institute of Technology), Robert Brooks (King's College London), Barry Brown (King's College London), Michael Brown (University of Oxford), Michael Bulger (University of Rochester Medical Center), Fred Bunz (Johns Hopkins University), Steve Burden (New York University School of Medicine), Max Burger (University of Basel), Stephen Burley (SGX Pharmaceuticals), Keith Burridge (University of North Carolina, Chapel Hill), John Cairns (Radcliffe Infirmary, Oxford), Patricia Calarco (University of California, San Francisco), Zacheus Cande (University of California, Berkeley), Lewis Cantley (Harvard Medical School), Charles Cantor (Columbia University), Roderick Capaldi (University of Oregon), Mario Capecchi (University of Utah), Michael Carey (University of California, Los Angeles), Adelaide Carpenter (University of California, San Diego), John Carroll (University College London), Tom Cavalier-Smith (King's College London), Pierre Chambon (University of Strasbourg), Hans Clevers (Hubrecht Institute, The Netherlands), Enrico Coen (John Innes Institute, Norwich, UK), Philip Cohen (University of Dundee, Scotland), Robert Cohen (University of California, San Francisco), Stephen Cohen (EMBL Heidelberg, Germany), Roger Cooke (University of California, San Francisco), John Cooper (Washington University School of Medicine, St. Louis), Michael Cox (University of Wisconsin, Madison), Nancy Craig (Johns Hopkins University), James Crow (University of Wisconsin, Madison), Stuart Cull-Candy (University College London), Leslie Dale (University College London), Caroline Damsky (University of California, San Francisco), Johann De Bono (The Institute of Cancer Research, UK), Anthony DeFranco (University of California, San Francisco), Abby Dernburg (University of California, Berkeley), Arshad Desai (University of California, San Diego), Michael Dexter (The Wellcome Trust, UK), John Dick (University of Toronto, Canada), Christopher Dobson (University of Cambridge), Russell Doolittle (University of California, San Diego), W. Ford Doolittle (Dalhousie University, Canada), Julian Downward (Cancer Research UK), Keith Dudley (King's College London), Graham Dunn (MRC Cell Biophysics Unit, London), Jim Dunwell (John Innes Institute, Norwich, UK), Bruce Edgar (Fred Hutchinson Cancer Research Center, Seattle), Paul Edwards (University of Cambridge), Robert Edwards (University of California, San Francisco), David Eisenberg (University of California, Los Angeles), Sarah Elgin (Washington University, St. Louis), Ruth Ellman (Institute of Cancer Research, Sutton, UK), Beverly Emerson (The Salk Institute), Charles Emerson (University of Virginia), Scott D. Emr (Cornell University), Sharyn Endow (Duke University), Lynn Enquist (Princeton University), Tariq Enver (Institute of Cancer Research, London), David Epel (Stanford University), Gerard Evan (University of California, Comprehensive Cancer Center), Ray Evert (University of Wisconsin, Madison), Matthias Falk (Lehigh University), Stanley Falkow (Stanford University), Douglas Fearon (University of Cambridge), Gary Felsenfeld (NIH), Stuart Ferguson (University of Oxford), James Ferrell (Stanford University), Christine Field (Harvard Medical School), Daniel Finley (Harvard University), Gary Firestone (University of

California, Berkeley), Gerald Fischbach (Columbia University), Robert Fletterick (University of California, San Francisco), Harvey Florman (Tufts University), Judah Folkman (Harvard Medical School), Larry Fowke (University of Saskatchewan, Canada), Jennifer Frazier (Exploratorium[®], San Francisco), Matthew Freeman (Laboratory of Molecular Biology, UK), Daniel Friend (University of California, San Francisco), Elaine Fuchs (University of Chicago), Joseph Gall (Carnegie Institution of Washington), Richard Gardner (University of Oxford), Anthony Gardner-Medwin (University College London), Peter Garland (Institute of Cancer Research, London), David Garrod (University of Manchester, UK), Susan M. Gasser (University of Basel), Walter Gehring (Biozentrum, University of Basel), Benny Geiger (Weizmann Institute of Science, Rehovot, Israel), Larry Gerace (The Scripps Research Institute), Holger Gerhardt (London Research Institute), John Gerhart (University of California, Berkeley), Günther Gerisch (Max Planck Institute of Biochemistry), Frank Gertler (Massachusetts Institute of Technology), Sankar Ghosh (Yale University School of Medicine), Alfred Gilman (The University of Texas Southwestern Medical Center), Reid Gilmore (University of Massachusetts, Amherst), Bernie Gilula (deceased), Charles Gilvarg (Princeton University), Benjamin S. Glick (University of Chicago), Michael Glotzer (University of Chicago), Larry Goldstein (University of California, San Diego), Bastien Gomperts (University College Hospital Medical School, London), Daniel Goodenough (Harvard Medical School), Jim Goodrich (University of Colorado, Boulder), Jeffrey Gordon (Washington University, St. Louis), Peter Gould (Middlesex Hospital Medical School, London), Alan Grafen (University of Oxford), Walter Gratzer (King's College London), Michael Gray (Dalhousie University), Douglas Green (St. Jude Children's Hospital), Howard Green (Harvard University), Michael Green (University of Massachusetts, Amherst), Leslie Grivell (University of Amsterdam), Carol Gross (University of California, San Francisco), Frank Grosveld (Erasmus Universiteit, The Netherlands), Michael Grunstein (University of California, Los Angeles), Barry Gumbiner (Memorial Sloan Kettering Cancer Center), Brian Gunning (Australian National University, Canberra), Christine Guthrie (University of California, San Francisco), James Haber (Brandeis University), Ernst Hafen (Universitat Zurich), David Haig (Harvard University), Andrew Halestrap (University of Bristol, UK), Alan Hall (Memorial Sloan Kettering Cancer Center), Jeffrey Hall (Brandeis University), John Hall (University of Southampton, UK), Zach Hall (University of California, San Francisco), Douglas Hanahan (University of California, San Francisco), David Hanke (University of Cambridge), Nicholas Harberd (University of Oxford), Graham Hardie (University of Dundee, Scotland), Richard Harland (University of California, Berkeley), Adrian Harris (Cancer Research UK), John Harris (University of Otago, New Zealand), Stephen Harrison (Harvard University), Leland Hartwell (University of Washington, Seattle), Adrian Harwood (MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, London), Scott Hawley (Stowers Institute for Medical Research, Kansas City), Rebecca Heald (University of California, Berkeley), John Heath (University of Birmingham, UK), Ramanujan Hegde (NIH), Carl-Henrik Heldin (Uppsala University), Ari Helenius (Swiss Federal Institute of Technology), Richard Henderson (MRC Laboratory of Molecular Biology,

Cambridge, UK), Glenn Herrick (University of Utah), Ira Herskowitz (deceased), Bertil Hille (University of Washington, Seattle), Alan Hinnebusch (NIH. Bethesda), Brigid Hogan (Duke University), Nancy Hollingsworth (State University of New York, Stony Brook), Frank Holstege (University Medical Center, The Netherlands), Leroy Hood (Institute for Systems Biology, Seattle), John Hopfield (Princeton University), Robert Horvitz (Massachusetts Institute of Technology), Art Horwich (Yale University School of Medicine), David Housman (Massachusetts Institute of Technology), Joe Howard (Max Planck Institute of Molecular Cell Biology and Genetics), Jonathan Howard (University of Washington, Seattle), James Hudspeth (The Rockefeller University), Simon Hughes (King's College London), Martin Humphries (University of Manchester, UK), Tim Hunt (Cancer Research UK), Neil Hunter (University of California, Davis), Laurence Hurst (University of Bath, UK), Jeremy Hyams (University College London), Tony Hyman (Max Planck Institute of Molecular Cell Biology and Genetics), Richard Hynes (Massachusetts Institute of Technology), Philip Ingham (University of Sheffield, UK), Kenneth Irvine (Rutgers University), Robin Irvine (University of Cambridge), Norman Iscove (Ontario Cancer Institute, Toronto), David Ish-Horowicz (Cancer Research UK), Lily Jan (University of California, San Francisco), Charles Janeway (deceased), Tom Jessell (Columbia University), Arthur Johnson (Texas A&M University), Louise Johnson (deceased), Andy Johnston (John Innes Institute, Norwich, UK), E.G. Jordan (Queen Elizabeth College, London), Ron Kaback (University of California, Los Angeles), Michael Karin (University of California, San Diego), Eric Karsenti (European Molecular Biology Laboratory, Germany), Ken Keegstra (Michigan State University), Ray Keller (University of California, Berkeley), Douglas Kellogg (University of California, Santa Cruz), Regis Kelly (University of California, San Francisco), John Kendrick-Jones (MRC Laboratory of Molecular Biology, Cambridge), Cynthia Kenyon (University of California, San Francisco), Roger Keynes (University of Cambridge), Judith Kimble (University of Wisconsin, Madison), Robert Kingston (Massachusetts General Hospital), Marc Kirschner (Harvard University), Richard Klausner (NIH), Nancy Kleckner (Harvard University), Mike Klymkowsky (University of Colorado, Boulder), Kelly Komachi (University of California, San Francisco), Eugene Koonin (NIH), Juan Korenbrot (University of California, San Francisco), Roger Kornberg (Stanford University), Tom Kornberg (University of California, San Francisco), Stuart Kornfeld (Washington University, St. Louis), Daniel Koshland (University of California, Berkeley), Douglas Koshland (Carnegie Institution of Washington, Baltimore), Marilyn Kozak (University of Pittsburgh), Mark Krasnow (Stanford University), Werner Kühlbrandt (Max Planck Institute for Biophysics), John Kuriyan (University of California, Berkeley), Robert Kypta (MRC Laboratory for Molecular Cell Biology, London), Peter Lachmann (MRC Centre, Cambridge), Ulrich Laemmli (University of Geneva, Switzerland), Trevor Lamb (University of Cambridge), Hartmut Land (Cancer Research UK), David Lane (University of Dundee, Scotland), Jane Langdale (University of Oxford), Lewis Lanier (University of California, San Francisco), Jay Lash (University of Pennsylvania), Peter Lawrence (MRC Laboratory of Molecular Biology,

REMERCIEMENTS xv

Cambridge), Paul Lazarow (Mount Sinai School of Medicine), Robert I. Lefkowitz (Duke University), Michael Levine (University of California, Berkeley), Warren Levinson (University of California, San Francisco), Alex Levitzki (Hebrew University, Israel), Ottoline Levser (University of York, UK), Joachim Li (University of California, San Francisco), Tomas Lindahl (Cancer Research UK), Vishu Lingappa (University of California, San Francisco), Jennifer Lippincott-Schwartz (NIH), Joseph Lipsick (Stanford University School of Medicine), Dan Littman (New York University School of Medicine), Clive Lloyd (John Innes Institute, Norwich, UK), Richard Locksley (University of California, San Francisco), Richard Losick (Harvard University), Daniel Louvard (Institut Curie, France), Robin Lovell-Badge (National Institute for Medical Research, London), Scott Lowe (Cold Spring Harbor Laboratory), Shirley Lowe (University of California, San Francisco), Reinhard Lührman (Max Planck Institute of Biophysical Chemistry), Michael Lynch (Indiana University), Laura Machesky (University of Birmingham, UK), Hiten Madhani (University of California, San Francisco), James Maller (University of Colorado Medical School), Tom Maniatis (Harvard University), Colin Manoil (Harvard Medical School), Elliott Margulies (NIH), Philippa Marrack (National Jewish Medical and Research Center, Denver), Mark Marsh (Institute of Cancer Research, London), Wallace Marshall (University of California, San Francisco), Gail Martin (University of California, San Francisco), Paul Martin (University College London), Joan Massagué (Memorial Sloan Kettering Cancer Center), Christopher Mathews (Oregon State University), Brian McCarthy (University of California, Irvine), Richard McCarty (Cornell University), William McGinnis (University of California, San Diego), Anne McLaren (Wellcome/Cancer Research Campaign Institute, Cambridge), Frank McNally (University of California, Davis), Freiderick Meins (Freiderich Miescher Institut, Basel), Stephanie Mel (University of California, San Diego), Ira Mellman (Genentech), Barbara Meyer (University of California, Berkeley), Elliot Meyerowitz (California Institute of Technology), Chris Miller (Brandeis University), Robert Mishell (University of Birmingham, UK), Avrion Mitchison (University College London), N.A. Mitchison (University College London), Timothy Mitchison (Harvard Medical School), Quinn Mitrovich (University of California, San Francisco), Peter Mombaerts (The Rockefeller University), Mark Mooseker (Yale University), David Morgan (University of California, San Francisco), Michelle Moritz (University of California, San Francisco), Montrose Moses (Duke University), Keith Mostov (University of California, San Francisco), Anne Mudge (University College London), Hans Müller-Eberhard (Scripps Clinic and Research Institute), Alan Munro (University of Cambridge), J. Murdoch Mitchison (Harvard University), Richard Myers (Stanford University), Diana Myles (University of California, Davis), Andrew Murray (Harvard University), Shigekazu Nagata (Kyoto University, Japan), Geeta Narlikar (University of California, San Francisco), Kim Nasmyth (University of Oxford), Mark E. Nelson (University of Illinois, Urbana-Champaign), Michael Neuberger (deceased), Walter Neupert (University of Munich, Germany), David Nicholls (University of Dundee, Scotland), Roger Nicoll (University of California, San Francisco), Suzanne Noble (University of California, San Francisco), Harry Noller (University of California, Santa

Cruz), Jodi Nunnari (University of California, Davis), Paul Nurse (Francis Crick Institute), Roel Nusse (Stanford University), Michael Nussenzweig (Rockefeller University), Duncan O'Dell (deceased), Patrick O'Farrell (University of California, San Francisco), Bjorn Olsen (Harvard Medical School), Maynard Olson (University of Washington, Seattle), Stuart Orkin (Harvard University), Terry Orr-Weaver (Massachusetts Institute of Technology), Erin O'Shea (Harvard University), Dieter Osterhelt (Max Planck Institute of Biochemistry), William Otto (Cancer Research UK), John Owen (University of Birmingham, UK), Dale Oxender (University of Michigan), George Palade (deceased), Barbara Panning (University of California, San Francisco). Roy Parker (University of Arizona, Tucson), William W. Parson (University of Washington, Seattle), Terence Partridge (MRC Clinical Sciences Centre, London), William E. Paul (NIH), Tony Pawson (deceased), Hugh Pelham (MRC, UK), Robert Perry (Institute of Cancer Research, Philadelphia), Gordon Peters (Cancer Research UK), Greg Petsko (Brandeis University), Nikolaus Pfanner (University of Freiburg, Germany), David Phillips (The Rockefeller University), Jeremy Pickett-Heaps (The University of Melbourne, Australia), Jonathan Pines (Gurdon Institute, Cambridge), Julie Pitcher (University College London), Jeffrey Pollard (Albert Einstein College of Medicine), Tom Pollard (Yale University), Bruce Ponder (University of Cambridge), Daniel Portnoy (University of California, Berkeley), James Priess (University of Washington, Seattle), Darwin Prockop (Tulane University), Mark Ptashne (Memorial Sloan Kettering Cancer Center), Dale Purves (Duke University), Efraim Racker (Cornell University), Jordan Raff (University of Oxford), Klaus Rajewsky (Max Delbrück Center for Molecular Medicine, Germany), George Ratcliffe (University of Oxford), Elio Raviola (Harvard Medical School), Martin Rechsteiner (University of Utah, Salt Lake City), David Rees (National Institute for Medical Research, London), Thomas A. Reh (University of Washington, Seattle), Louis Reichardt (University of California, San Francisco), Renee Reijo (University of California, San Francisco), Caetano Reis e Sousa (Cancer Research UK), Fred Richards (Yale University), Conly Rieder (Wadsworth Center, Albany), Phillips Robbins (Massachusetts Institute of Technology), Elizabeth Robertson (The Wellcome Trust Centre for Human Genetics, UK), Elaine Robson (University of Reading, UK), Robert Roeder (The Rockefeller University), Joel Rosenbaum (Yale University), Janet Rossant (Mount Sinai Hospital, Toronto), Jesse Roth (NIH), Jim Rothman (Memorial Sloan Kettering Cancer Center), Rodney Rothstein (Columbia University), Erkki Ruoslahti (La Jolla Cancer Research Foundation), Gary Ruvkun (Massachusetts General Hospital), David Sabatini (New York University), Alan Sachs (University of California, Berkeley), Edward Salmon (University of North Carolina, Chapel Hill), Aziz Sancar (University of North Carolina, Chapel Hill), Joshua Sanes (Harvard University), Peter Sarnow (Stanford University), Lisa Satterwhite (Duke University Medical School), Robert Sauer (Massachusetts Institute of Technology), Ken Sawin (The Wellcome Trust Centre for Cell Biology, UK), Howard Schachman (University of California, Berkeley), Gerald Schatten (Pittsburgh Development Center), Gottfried Schatz (Biozentrum, University of Basel), Randy Schekman

(University of California, Berkeley), Richard Scheller (Stanford University), Giampietro Schiavo (Cancer Research UK), Ueli Schibler (University of Geneva, Switzerland), Joseph Schlessinger (New York University Medical Center), Danny J. Schnell (University of Massachusetts, Amherst). Michael Schramm (Hebrew University, Israel), Robert Schreiber (Washington University School of Medicine), James Schwartz (Columbia University), Ronald Schwartz (NIH), François Schweisguth (Institut Pasteur, France), John Scott (University of Manchester, UK), John Sedat (University of California, San Francisco), Peter Selby (Cancer Research UK), Zvi Sellinger (Hebrew University, Israel), Gregg Semenza (Johns Hopkins University), Philippe Sengel (University of Grenoble, France), Peter Shaw (John Innes Institute, Norwich, UK), Michael Sheetz (Columbia University), Morgan Sheng (Massachusetts Institute of Technology), Charles Sherr (St. Jude Children's Hospital), David Shima (Cancer Research UK), Samuel Silverstein (Columbia University), Melvin I. Simon (California Institute of Technology), Kai Simons (Max Planck Institute of Molecular Cell Biology and Genetics), Jonathan Slack (Cancer Research UK), Alison Smith (John Innes Institute, Norfolk, UK), Austin Smith (University of Edinburgh, UK), Jim Smith (The Gurdon Institute, UK), John Maynard Smith (University of Sussex, UK), Mitchell Sogin (Woods Hole Institute), Frank Solomon (Massachusetts Institute of Technology), Michael Solursh (University of Iowa), Bruce Spiegelman (Harvard Medical School), Timothy Springer (Harvard Medical School), Mathias Sprinzl (University of Bayreuth, Germany), Scott Stachel (University of California, Berkeley), Andrew Staehelin (University of Colorado, Boulder), David Standring (University of California, San Francisco), Margaret Stanley (University of Cambridge), Martha Stark (University of California, San Francisco), Wilfred Stein (Hebrew University, Israel), Malcolm Steinberg (Princeton University), Ralph Steinman (deceased), Len Stephens (The Babraham Institute, UK), Paul Sternberg (California Institute of Technology), Chuck Stevens (The Salk Institute), Murray Stewart (MRC Laboratory of Molecular Biology, Cambridge), Bruce Stillman (Cold Spring Harbor Laboratory), Charles Streuli (University of Manchester, UK), Monroe Strickberger (University of Missouri, St. Louis), Robert Stroud (University of California, San Francisco), Michael Stryker (University of California, San Francisco), William Sullivan (University of California, Santa Cruz), Azim Surani (The Gurdon Institute, University of Cambridge), Daniel Szollosi (Institut National de la Recherche Agronomique, France), Jack Szostak (Harvard Medical School), Clifford Tabin (Harvard Medical School), Masatoshi Takeichi (RIKEN Center for Developmental Biology, Japan), Nicolas Tapon (London Research Institute), Diethard Tautz (University of Cologne, Germany), Julie Theriot (Stanford University), Roger Thomas (University of Bristol, UK), Craig Thompson (Memorial Sloan Kettering Cancer Center), Janet Thornton (European Bioinformatics Institute, UK), Vernon Thornton (King's College London), Chervll Tickle (University of Dundee, Scotland), Jim Till (Ontario Cancer Institute,

Toronto), Lewis Tilney (University of Pennsylvania), David Tollervey (University of Edinburgh, UK), Ian Tomlinson (Cancer Research UK), Nick Tonks (Cold Spring Harbor Laboratory), Alain Townsend (Institute of Molecular Medicine, John Radcliffe Hospital, Oxford), Paul Travers (Scottish Institute for Regeneration Medicine), Robert Trelstad (UMDNJ-Robert Wood Johnson Medical School), Anthony Trewavas (Edinburgh University, Scotland), Nigel Unwin (MRC Laboratory of Molecular Biology, Cambridge), Victor Vacquier (University of California, San Diego), Ronald D. Vale (University of California, San Francisco), Tom Vanaman (University of Kentucky). Harry van der Westen (Wageningen, The Netherlands), Harold Varmus (National Cancer Institute, United States), Alexander J. Varshavsky (California Institute of Technology), Donald Voet (University of Pennsylvania), Harald von Boehmer (Harvard Medical School), Madhu Wahi (University of California, San Francisco), Virginia Walbot (Stanford University), Frank Walsh (GlaxoSmithKline, UK), Trevor Wang (John Innes Institute, Norwich, UK), Xiaodong Wang (The University of Texas Southwestern Medical School), Yu-Lie Wang (Worcester Foundation for Biomedical Research, MA), Gary Ward (University of Vermont), Anne Warner (University College London), Graham Warren (Yale University School of Medicine), Paul Wassarman (Mount Sinai School of Medicine), Clare Waterman-Storer (The Scripps Research Institute), Fiona Watt (Cancer Research UK), John Watts (John Innes Institute, Norwich, UK), Klaus Weber (Max Planck Institute for Biophysical Chemistry), Martin Weigert (Institute of Cancer Research, Philadelphia), Robert Weinberg (Massachusetts Institute of Technology), Harold Weintraub (deceased), Karsten Weis (Swiss Federal Institute of Technology), Irving Weissman (Stanford University), Jonathan Weissman (University of California, San Francisco), Susan R. Wente (Vanderbilt University School of Medicine), Norman Wessells (University of Oregon, Eugene), Stephen West (Cancer Research UK), Judy White (University of Virginia), William Wickner (Dartmouth College), Michael Wilcox (deceased), Lewis T. Williams (Chiron Corporation), Patrick Williamson (University of Massachusetts, Amherst), Keith Willison (Chester Beatty Laboratories, London), John Wilson (Baylor University), Alan Wolffe (deceased), Richard Wolfenden (University of North Carolina, Chapel Hill), Sandra Wolin (Yale University School of Medicine), Lewis Wolpert (University College London), Richard D. Wood (Institut universitaire de Pittsburgh Cancer), Abraham Worcel (Université de Rochester), Nick Wright (Cancer Research UK), John Wyke (Institut Beatson for Cancer Research, Glasgow), Michael P. Yaffe (California Institute for Regenerative Medicine), Kenneth M. Yamada (NIH), Keith Yamamoto (University of California, San Francisco), Charles Yocum (University of Michigan, Ann Arbor), Peter Yurchenco (UMDNJ—Robert Wood Johnson Medical School), Rosalind Zalin (University College London), Patricia Zambryski (University of California, Berkeley), Marino Zerial (Max Planck Institute of Molecular Cell Biology and Genetics).

Sommaire abrégé

PARTIE I	INTRODUCTION A LA CELLULE	
Chapitre 1	Cellules et génomes	
Chapitre 2	Chimie cellulaire et bioénergétique	43
Chapitre 3	Protéines	109
PARTIE II	MÉCANISMES GÉNÉTIQUES DE BASE	173
Chapitre 4	ADN, chromosomes et génomes	173
Chapitre 5	Réplication, réparation et recombinaison de l'ADN	237
Chapitre 6	Comment les cellules lisent le génome : de l'ADN à la protéine	299
Chapitre 7	Contrôle de l'expression des gènes	369
PARTIE III	LES FAÇONS DE TRAVAILLER AVEC DES CELLULES	439
Chapitre 8	Analyse des cellules, des molécules et des systèmes	439
Chapitre 9	Observation des cellules	529
PARTIE IV	ORGANISATION INTERNE DE LA CELLULE	569
Chapitre 10	Structure de la membrane	569
Chapitre 11	Transport membranaire de petites molécules et propriétés électriques des membranes	59
Chapitre 12	Compartiments intracellulaires et tri des protéines	64
Chapitre 13	Transport membranaire intracellulaire	698
Chapitre 14	Conversion de l'énergie : les mitochondries et les chloroplastes	753
Chapitre 15	La signalisation cellulaire	813
Chapitre 16	Le cytosquelette	889
Chapitre 17	Le cycle cellulaire	963
Chapitre 18	La mort cellulaire	102
Chapitre 19	Les jonctions cellulaires et la matrice extracellulaire	103
PARTIE V	LES CELLULES DANS LEUR CONTEXTE SOCIAL	103
Chapitre 20	Le cancer	109
Chapitre 21	Développement des organismes multicellulaires	114
Chapitre 22	Les cellules souches et le renouvellement des tissus	1217
Chapitre 23	Les pathogènes et les infections	1260
Chapitre 24	Les systèmes immunitaires inné et adaptatif	129
Glossaire		G:
Index		1:
Tableaux	Le code génétique, Acides aminés	T:

Éléments spécifiques

IADLEAU 1-2	Quelques organismes modeles et leurs genomes	29
TABLEAU 2-1	Liaisons chimiques covalentes et non covalentes	45
TABLEAU 2-2	Relation entre la variation standard d'énergie libre, ΔG° , et la constante d'équilibre	63
PLANCHE 2-1	Liaisons chimiques et groupements fonctionnels fréquemment retrouvés dans les molécules biologiques	90
PLANCHE 2-2	L'eau et son influence sur le comportement des molécules biologiques	92
	Principaux types de liaisons faibles non covalentes qui maintiennent ensemble les macromolécules	94
PLANCHE 2-4	Aperçu de certains types de sucres habituellement trouvés dans les cellules	96
PLANCHE 2-5	Acides gras et autres lipides	98
PLANCHE 2-6	Vue générale des nucléotides	100
PLANCHE 2-7	Énergie libre et réactions biologiques	102
PLANCHE 2-8	Détails des 10 étapes de la glycolyse	104
PLANCHE 2-9	Cycle complet de l'acide citrique	106
PLANCHE 3-1	Les 20 acides aminés des protéines	112
TABLEAU 3-3	Quelques molécules liées de façon covalente aux protéines régulent leur fonction	165
TABLEAU 4-1	Quelques statistiques essentielles sur le génome humain	184
TABLEAU 5-4	Les trois classes principales d'éléments transposables	288
TABLEAU 6-1	Les principaux types d'ARN produits dans les cellules	305
PLANCHE 7-1	Motifs structuraux communs dans les régulateurs transcriptionnels	376
PLANCHE 8-1	Méthodes de séquençage de l'ADN	478
PLANCHE 8-2	Revue de la génétique classique	486
TABLEAU 11-1	Comparaison des concentrations d'ions inorganiques à l'intérieuret à l'extérieur	
	d'une cellule typique de mammifère	598
PLANCHE 11-1	Établissement de l'équation de Nernst	616
TABLEAU 12-1	Volumes relatifs occupés par les principaux compartiments intracellulaires d'une cellule hépatique (hépatocyte)	643
PLANCHE 14-1	Potentiels redox	765
TABLEAU 14-1	Rendements nets de l'oxydation des sucres et des graisses	775
TABLEAU 15-3	Les quatre plus grandes familles de protéines G trimériques	846
TABLEAU 15-4	Certaines protéines signal agissent par l'intermédiaire des RTK	850
	La superfamille Ras des GTPases monomériques	854
TABLEAU 15-6	Certaines protéines signal extracellulaires qui agissent par l'intermédiaire des récepteurs	
	des cytokines et la voie de signalisation JAK-STAT	864
	La polymérisation de l'actine et de la tubuline	902
	Inhibiteurs chimiques de l'actine et des microtubules	904
	B Filaments d'actine	905
PLANCHE 16-4		933
	Principaux types de protéines des filaments intermédiaires des cellules de vertébrés	944
	Les principales cyclines et les Cdk des vertébrés et de la levurebourgeonnante	969
	Résumé des principales protéines régulatrices du cycle cellulaire	973
	Les principales étapes de la phase M (mitose et cytokinèse) dans une cellule animale	980
	Les jonctions d'ancrage	1037
	Quelques types de collagènes et leurs propriétés	1063
	Quelques types d'intégrines	1076
	Cellules sanguines	1241
	Propriétés des principales classes d'anticorps chez l'homme	1318
TABLEAU 24-3	Propriétés des protéines humaines de classe I et de classe II du CMH	1330

Sommaire détaillé

Chapitre 1 Cellules et génomes	1	La souris est l'organisme modèle majeur des mammifères	35
LES CARACTÉRISTIQUES UNIVERSELLES DES CELLULES	0	L'homme décrit lui-même ses propres particularités Nous sommes tous différents dans le détail	36 38
SUR LA TERRE Toutes les cellules stockent leur information génétique à l'aide	2	Pour comprendre les cellules et les organismes, nous avons besoin de mathématiques, d'ordinateurs et d'informations quantitatives	38
du même code chimique linéaire : l'ADN	2	Résumé	39
Toutes les cellules reproduisent leur information génétique par polymérisation à partir d'une matrice	3	Références	40
Toutes les cellules transcrivent des portions de leur information	J	Chapitre 2 Chimie cellulaire et bioénergétique	43
génétique en une même forme intermédiaire : l'ARN	4		
Toutes les cellules utilisent les protéines comme catalyseurs	5	LES COMPOSANTS CHIMIQUES DE LA CELLULE Les molécules d'eau sont maintenues ensemble par des liaisons	43
Toutes les cellules traduisent l'ARN en protéines de la même manière	6 7	hydrogène	44
Chaque protéine est codée par un gène spécifique La vie a besoin d'énergie libre	8	Quatre types d'interactions non covalentes facilitent	
Toutes les cellules sont des usines biochimiques qui utilisent		le rapprochement des molécules dans la cellule	44
les mêmes unités de construction moléculaires	8	Certaines molécules polaires forment des acides ou des bases dans l'eau	45
Toutes les cellules sont entourées d'une membrane plasmique à travers laquelle doivent passer les nutriments et les déchets	8	Une cellule est formée de composés du carbone	43
Une cellule vivante peut exister avec moins de 500 gènes	9	Les cellules contiennent quatre familles principales de petites	
Résumé	10	molécules organiques	47
LA DIVERSITÉ DES GÉNOMES ET L'ARBRE DE LA VIE	10	La chimie de la cellule est dominée par des macromolécules	47
Les cellules peuvent utiliser une grande variété de sources d'énergie libre	10	aux propriétés remarquables Des liaisons non covalentes définissent à la fois la forme précise	47
Certaines cellules fixent l'azote et le gaz carbonique pour les autres	12	d'une macromolécule et sa fixation aux autres molécules	49
La plus grande diversité biochimique est trouvée parmi les cellules	12	Résumé	50
procaryotes L'arbre de la vie comporte trois branches primitives : les bactéries,	12	CATALYSE ET UTILISATION DE L'ÉNERGIE PAR LES CELLULES	51
les archéobactéries (archaea) et les eucaryotes	14	Le métabolisme cellulaire est organisé par les enzymes	51
Certains gènes évoluent rapidement; d'autres sont très conservés	15	L'ordre biologique est rendu possible par la libération d'énergie	
La plupart des bactéries et des archéobactéries ont 1 000	4.0	thermique par la cellule	52
à 6000 gènes	16 16	Les cellules obtiennent de l'énergie par oxydation des molécules organiques	54
Les nouveaux gènes proviennent de gènes préexistants Les duplications de gènes donnent naissance à des familles	10	Oxydation et réduction mettent en jeu un transfert d'électrons	55
de gènes apparentés dans une même cellule	17	Les enzymes abaissent les barrières d'énergie d'activation	
Les gènes peuvent être transférés d'un organisme à un autre,		qui bloquent les réactions chimiques	57
au laboratoire et dans la nature	18	Les enzymes peuvent entraîner les molécules de substrat le long	EO
Les échanges horizontaux d'informations génétiques dans une espèce sont effectués par voie sexuelle	19	de voies de réaction spécifiques Comment les enzymes trouvent leurs substrats : la très grande	58
La fonction d'un gène peut souvent être déduite de sa séquence	20	rapidité des mouvements moléculaires	59
Plus de 200 familles de gènes sont communes aux trois	20	La variation d'énergie libre d'une réaction, ΔG, détermine	
embranchements primaires de l'arbre phylogénétique	20	si cette réaction peut se produire spontanément	60
Les mutations peuvent révéler les fonctions des gènes	21	La concentration en réactifs influence la variation d'énergie libre	01
La biologie moléculaire s'est focalisée à ses débuts sur l'étude d' <i>E. coli</i> Résumé	22 22	et le sens de la réaction Le changement d'énergie libre standard, ΔG° , permet de comparer	61
		l'énergétique de réactions différentes	61
L'INFORMATION GÉNÉTIQUE CHEZ LES EUCARYOTES Les cellules eucaryotes étaient peut-être, à l'origine, des prédateurs	23 24	La constante d'équilibre et ΔG° sont faciles à déduire l'une de l'autre	62
Les cellules eucaryotes modernes ont évolué à partir d'une symbiose	25	Les changements d'énergie libre des réactions couplées sont additifs	63
Les eucaryotes ont des génomes hybrides	27	Des molécules de transport activées sont indispensables	00
Les génomes des eucaryotes sont grands	28	pour les biosynthèses La formation d'un transporteur d'énergie activé est couplée	63
Les génomes des eucaryotes sont riches en séquences d'ADN régulatrices	29	à une réaction énergétiquement favorable	64
Le génome définit le programme de développement multicellulaire De nombreux eucaryotes vivent sous forme d'une cellule isolée	29 30	L'ATP est la molécule de transport activée la plus utilisée	65
Une levure sert de modèle eucaryote minimal	30	L'énergie stockée dans l'ATP est souvent utilisée pour réunir	
Les niveaux d'expression de tous les gènes d'un organisme		deux molécules	65
peuvent être analysés simultanément	32	NADH et NADPH sont d'importants transporteurs d'électrons Il existe beaucoup d'autres molécules de transport activées	67
Arabidopsis a été choisi parmi 300 000 espèces comme modèle végétal	32	dans les cellules	68
Le monde des cellules animales est représenté par un ver, une mouche, un poisson, une souris et l'homme	33	La synthèse des polymères biologiques est entraînée	
Les études sur la drosophile ont fourni une clé pour le développement	00	par l'hydrolyse d'ATP	70
des vertébrés	33	Résumé	73
Le génome des vertébrés est le produit de duplications répétées	34	COMMENT LES CELLULES TIRENT LEUR ÉNERGIE DES ALIMENTS	73
La grenouille et le poisson zèbre fournissent des modèles	O.F.	La glycolyse est une voie métabolique centrale de production d'ATP	74 75
accessibles pour le développement des vertébrés	35	La fermentation permet de produire de l'ATP en l'absence d'oxygène	75

La glycolyse illustre la manière dont les enzymes couplent		Un assemblage symétrique de protéines entraîne des transitions	
l'oxydation au stockage de l'énergie	76	allostériques coopératives	152
Les organismes stockent les molécules alimentaires	70	De nombreux changements des protéines sont produits	4.50
dans des réservoirs spéciaux	78	par phosphorylation	153
Entre les repas, la plupart des cellules animales tirent leur énergie des acides gras	81	Une cellule eucaryote contient une grande collection de protéine kinases et de protéine phosphatases	154
Les sucres et les graisses sont dégradés en acétyl CoA	01	La régulation de la protéine kinase Src montre qu'une protéine	10
dans les mitochondries	81	peut fonctionner comme un microprocesseur électronique	155
Le cycle de l'acide citrique génère du NADH par oxydation		Les protéines qui fixent le GTP et l'hydrolysent sont des régulateurs	4.50
des groupements acétyle en CO ₂	82	cellulaires ubiquitaires	156
Le transport d'électrons entraîne la synthèse de la majorité de l'ATP dans la plupart des cellules	84	Les protéines régulatrices GAP et GEF contrôlent l'activité des protéines fixant le GTP en déterminant si c'est un GTP ou un GDP qui est fixé	157
Les acides aminés et les nucléotides font partie du cycle de l'azote	85	Des protéines peuvent être régulées par l'addition covalente	
Le métabolisme est hautement organisé et régulé	87	d'autres protéines	157
Résumé	88	Un système élaboré de conjugaison à l'ubiquitine est utilisé	
Références	89	pour marquer les protéines	158
Chapitre 3 Protéines	109	Les complexes protéiques avec leurs parties interchangeables utilisent efficacement l'information génétique	159
		Une protéine fixant le GTP montre comment de grands mouvements	
LA FORME ET LA STRUCTURE DES PROTÉINES	109	de protéines peuvent être générés	160
La forme d'une protéine est spécifiée par sa séquence d'acides aminés Les protéines se replient en la conformation ayant la plus faible énergie	109 114	Les moteurs protéiques produisent de grands mouvements	
L'hélice α et le feuillet β sont des types de repliement fréquents	115	dans les cellules	161
Les domaines protéiques sont des unités modulaires		Des transporteurs attachés à la membrane exploitent de l'énergie pour pomper des molécules à travers les membranes	163
à partir desquelles des protéines plus grandes sont construites	117	Les protéines forment souvent de gros complexes qui fonctionnent	
Parmi toutes les chaînes polypeptidiques théoriquement possibles,	440	comme des machines protéiques	164
seul un petit nombre est utilisé par les cellules Les protéines peuvent être classées en un grand nombre de familles	118 119	Des échafaudages concentrent des ensembles de protéines interactives	164
Certains domaines protéiques sont retrouvés dans de nombreuses	113	Beaucoup de protéines sont contrôlées par des modifications covalentes	165
protéines différentes	121	qui les dirigent vers des sites spécifiques à l'intérieur de la cellule Un réseau complexe d'interactions protéiques est à la base	100
Certaines paires de domaines sont retrouvées associées		du fonctionnement cellulaire	166
dans de nombreuses protéines	122	Résumé	169
Le génome humain code un ensemble complexe de protéines et nous révèle que beaucoup restent encore mystérieuses	122	Références	170
Les plus grosses molécules protéiques contiennent souvent	122	Chapitre 4 ADN, chromosomes et génomes	173
plus d'une chaîne polypeptidique	123	Onaphire 4 ADIV, enformesomes et genomes	
Certaines protéines globulaires forment de longs filaments hélicoïdaux	123	LA STRUCTURE ET LA FONCTION DE L'ADN	175
De nombreuses molécules protéiques ont des formes allongées et fibreuses	124	Une molécule d'ADN est composée de deux chaînes	170
Certaines protéines contiennent une quantité étonnamment grande	105	complémentaires de nucléotides La structure de l'ADN fournit un mécanisme à l'hérédité	175 177
de chaînes polypeptidiques intrinsèquement désordonnées Les protéines extracellulaires sont stabilisées par des liaisons	125	Chez les eucaryotes, l'ADN est enfermé dans le noyau de la cellule	178
transversales covalentes	127	Résumé	179
Les protéines servent souvent de sous-unités d'assemblage		L'ADN CHROMOSOMIQUE ET SON EMPAQUETAGE	
pour former de grosses structures	127	DANS LA FIBRE DE CHROMATINE	179
Beaucoup de structures cellulaires peuvent s'auto-assembler La formation de structures biologiques complexes est souvent	128	L'ADN eucaryote est empaqueté dans un ensemble de chromosomes	180
facilitée par des facteurs d'assemblage	130	Les chromosomes contiennent de longues files de gènes La séquence des nucléotides du génome humain indique	182
Des fibrilles amyloïdes peuvent se former à partir de nombreuses protéines	130	comment les gènes sont disposés chez l'homme	183
Les structures amyloïdes peuvent remplir des fonctions utiles		Chaque molécule d'ADN formant un chromosome linéaire doit contenir	
dans les cellules	132	un centromère, deux télomères et des origines de réplication	185
Beaucoup de protéines contiennent des domaines de faible complexité qui peuvent former des « amyloïdes réversibles »	132	Les molécules d'ADN sont très condensées dans les chromosomes	187
Résumé	134	Les nucléosomes sont les unités de structure de base des chromosomes eucaryotes	187
FONCTION DES PROTÉINES	134	La structure de la particule cœur de nucléosome révèle le mode	101
Toutes les protéines peuvent se fixer à d'autres molécules	134	d'empaquetage de l'ADN	188
La conformation de la surface d'une protéine détermine		Les nucléosomes ont une structure dynamique et sont souvent	
son activité chimique	135	soumis à des modifications catalysées par des complexes	100
La comparaison des séquences des membres d'une famille	100	de remodelage de la chromatine dépendants de l'ATP Les nucléosomes sont généralement empaquetés ensemble	190
de protéines fait reconnaître des sites de fixation décisifs Les protéines peuvent se fixer à d'autres protéines	136	pour former une fibre de chromatine compacte	191
par l'intermédiaire de plusieurs types d'interfaces	137	Résumé	193
Les sites de fixation des anticorps sont particulièrement polyvalents	138	STRUCTURE ET FONCTION DE LA CHROMATINE	194
La force de fixation est mesurée par la constante d'équilibre	138	L'hétérochromatine est hautement organisée et restreint	
Les enzymes sont des catalyseurs puissants et hautement spécifiques	140	l'expression des gènes	194
La fixation du substrat est la première étape de la catalyse enzymatique Les enzymes accélèrent les réactions en stabilisant sélectivement	141	L'état hétérochromatique s'autopropage Les histones du cœur subissent des modifications covalentes	194
les états de transition	141	sur de nombreux sites différents	196
Les enzymes peuvent utiliser simultanément la catalyse acide		La chromatine acquiert une diversité supplémentaire	
et la catalyse basique	144	par l'insertion d'un petit ensemble de variants d'histones	198
Le lysozyme illustre le fonctionnement d'une enzyme	144	Les modifications covalentes et les variants d'histones agissent	400
De petites molécules fortement fixées ajoutent des fonctions supplémentaires aux protéines	146	de concert pour contrôler les fonctions chromosomiques	198
Les complexes multienzymatiques permettent d'accélérer	1-10	Un complexe de protéines de lecture et d'écriture peut propager des modifications spécifiques de la chromatine le long	
le métabolisme cellulaire	148	d'un chromosome	199
La cellule régule l'activité catalytique de ses enzymes	149	Des séquences d'ADN garde-fou bloquent la propagation	
Les enzymes allostériques possèdent deux ou plusieurs sites	4.54	des complexes de lecture-écriture et séparent ainsi des domaines	000
de fixation qui interagissent Deux ligands dont les sites de fixation sont couplés doivent	151	de chromatine voisins La chromatine des centromères révèle comment les variants	202
modifier réciproguement la fixation de l'un et de l'autre	151	d'histones peuvent générer des structures particulières	203

SOMMAIRE DÉTAILLÉ xxi

Certaines structures chromatiniennes peuvent être directement	00.4	Des protéines particulières facilitent l'ouverture de la double hélice	0.40
transmises par hérédité Des expériences sur les embryons de grenouille suggèrent	204	d'ADN en avant de la fourche de réplication La molécule d'ADN polymérase qui se déplace maintient l'ADN	246
que les deux structures de la chromatine, activatrice		en place grâce à un anneau coulissant	246
et répressive, peuvent être héritées épigénétiquement	205	Les protéines situées à la fourche de réplication coopèrent	
Les structures de la chromatine sont importantes pour la fonction		pour former la machine réplicative	249
des chromosomes eucaryotes	206	Un système de réparation des mésappariements contrôlé	
Résumé	207	par le brin d'ADN enlève les erreurs de réplication	050
LA STRUCTURE GLOBALE DES CHROMOSOMES	207	qui ont échappé à la machinerie de réplication Les ADN topoisomérases empêchent l'ADN de s'emmêler	250
Les chromosomes sont repliés en larges boucles de chromatine	207	pendant la réplication	251
Les chromosomes polytènes sont exceptionnellement utiles	000	La réplication de l'ADN est fondamentalement similaire	
pour visualiser des structures de la chromatine Il existe de nombreuses formes de chromatine	208 210	chez les eucaryotes et les bactéries	253
Les boucles de chromatine se décondensent quand les gènes	210	Résumé	254
qu'elles contiennent sont exprimés	211	L'INITIATION ET LA TERMINAISON DE LA RÉPLICATION	
La chromatine peut se déplacer vers des sites spécifiques		DE L'ADN DANS LES CHROMOSOMES	254
du noyau afin d'altérer l'expression des gènes	212	La synthèse de l'ADN commence aux origines de réplication	254
Des réseaux de macromolécules forment un ensemble	0.1.0	Les chromosomes bactériens n'ont généralement	OFF
d'environnements biochimiques distincts à l'intérieur du noyau	213 214	qu'une seule origine de réplication de l'ADN Les chromosomes eucaryotes contiennent de multiples origines	255
Les chromosomes mitotiques sont très hautement condensés Résumé	214	de réplication	256
		Chez les eucaryotes, la réplication de l'ADN ne s'effectue	
COMMENT ÉVOLUENT LES GÉNOMES Les comparaisons génomiques identifient les séquences d'ADN	216	que pendant une partie du cycle cellulaire	258
fonctionnelles par leur conservation tout au long de l'évolution	217	Différentes régions du même chromosome se répliquent	
Des altérations du génome peuvent être causées par des échecs	211	à des moments différents au cours de la phase S	258
dans les mécanismes normaux de copie et d'entretien		Un grand complexe comportant de multiples sous-unités se fixe sur les origines de réplication des eucaryotes	259
de l'ADN, et aussi par des éléments transposables d'ADN	217	Les caractéristiques du génome humain qui spécifient les origines	209
Les différences entre les séquences des génomes de deux espèces		de réplication restent à découvrir	260
sont proportionnelles à la durée pendant laquelle celles-ci	010	De nouveaux nucléosomes sont assemblés à l'arrière	
ont évolué séparément Les arbres phylogénétiques construits par comparaison des séquences	218	de la fourche de réplication	261
ADN permettent d'établir les relations de parenté		La télomérase réplique les extrémités des chromosomes	262
de tous les organismes	219	Les télomères sont emballés dans des structures spécialisées	000
La comparaison des chromosomes humains et de souris montre		qui protègent les extrémités des chromosomes La longueur du télomère est contrôlée par les cellules et les organismes	263 264
comment les structures des génomes divergent	221	Résumé	265
La taille du génome d'un vertébré reflète les vitesses relatives		LA RÉPARATION DE L'ADN	266
des additions et des pertes d'ADN dans une lignée	222	Sans réparation de l'ADN, les lésions spontanées de l'ADN	200
Nous pouvons inférer la séquence de quelques génomes anciens La comparaison de séquences provenant de nombreuses espèces	223	modifieraient rapidement les séquences d'ADN	267
a permis d'identifier de longues séquences ADN à fonction inconnue	224	La double hélice d'ADN est facilement réparée	268
Des changements dans des séquences antérieurement bien conservées		Les dommages de l'ADN peuvent être éliminés selon plusieurs voies	269
peuvent aider à déchiffrer les étapes critiques de l'évolution	226	Le couplage de la réparation par excision de nucléotides	
Des mutations dans les séquences d'ADN qui contrôlent l'expression		à la transcription permet une réparation efficace de l'ADN le plus important pour la cellule	271
des gènes ont entraîné un grand nombre de changements évolutifs	007	La nature chimique des bases de l'ADN facilite la détection	211
chez les vertébrés La duplication des gènes est aussi une source importante	227	des dommages	271
de nouveauté génétique au cours de l'évolution	227	Des ADN polymérases translésionnelles spéciales sont utilisées	
Les gènes dupliqués divergent	228	dans les situations d'urgence	273
L'évolution de la famille des gènes de la globine montre comment		Les cassures double brin sont efficacement réparées	273
les duplications de l'ADN contribuent à l'évolution des organismes	229	Les dommages causés à l'ADN retardent la progression du cycle cellulaire Résumé	276 276
Des gènes codant de nouvelles protéines peuvent être créés	000		
par recombinaison d'exons Des mutations neutres se disséminent souvent et finissent par se fixer	230	LA RECOMBINAISON HOMOLOGUE La recombinaison homologue a des caractéristiques	276
dans une population, avec une probabilité qui dépend de la taille		communes dans toutes les cellules	277
de cette population	230	La recombinaison homologue est guidée par l'appariement	
L'analyse des différences génétiques entre les hommes		des bases de l'ADN	277
peut beaucoup nous apprendre	232	La recombinaison homologue peut réparer sans faute une cassure	
Résumé	234	totale d'ADN double brin	278 279
Références	235	L'échange de brin est effectué par la protéine RecA/Rad51 La recombinaison homologue peut sauver des fourches	219
Chapitre 5 Réplication, réparation et recombinaison		de réplication d'ADN cassées	280
	237	Les cellules contrôlent avec soin le recours à la recombinaison	
		homologue pour réparer l'ADN	280
LE MAINTIEN DES SÉQUENCES D'ADN	237	La recombinaison homologue est cruciale pour la méiose	282
Les taux de mutations sont extrêmement bas	237	La recombinaison méiotique commence par une cassure	000
Des taux bas de mutations sont nécessaires à la vie telle que nous la connaissons	238	double brin programmée Les jonctions de Holliday sont formées lors de la méiose	282 284
Résumé	239	La recombinaison homologue produit à la fois des événements	204
LES MÉCANISMES DE LA RÉPLICATION DE L'ADN	239	de crossing-over et de non-crossing-over durant la méiose	284
L'appariement des bases est à l'origine de la réplication	200	La recombinaison homologue a souvent comme résultat	
et de la réparation de l'ADN	239	une conversion génique	286
La fourche de réplication de l'ADN est asymétrique	240	Résumé	286
La haute fidélité de la réplication de l'ADN requiert plusieurs	0.10	TRANSPOSITION ET RECOMBINAISON CONSERVATIVE	c
mécanismes de vérification (proofreading)	242	SPÉCIFIQUE DE SITE Grâce à la transposition, les éléments génétiques mobiles	287
Seule la réplication de l'ADN dans le sens 5' vers 3' permet une correction efficace des erreurs	244	Grâce à la transposition, les éléments génétiques mobiles peuvent s'insérer dans n'importe quelle séquence d'ADN	288
Une enzyme particulière catalysant la polymérisation de nucléotides	<u>_ , </u>	Les transposons ADN seul peuvent se déplacer	_00
synthétise de courtes molécules d'ARN amorce sur le brin retardé	245	par un mécanisme de couper-coller	288

Certains virus utilisent un mécanisme de transposition		De nombreux processus biologiques surmontent les limitations	
pour pénétrer dans les chromosomes de la cellule hôte	290	inhérentes à l'appariement de bases complémentaires	345
Les rétrotransposons de type rétroviral ressemblent		L'exactitude de la traduction requiert une dépense d'énergie libre	345
à des rétrovirus, mais sont dépourvus de capside protéique	291	Le ribosome est un ribozyme	346
Une grande partie du génome humain est composée	004	Des séquences nucléotidiques de l'ARNm signalent l'endroit	0.47
de rétrotransposons non rétroviraux Différents éléments transposables prédominent	291	où doit commencer la synthèse des protéines Les codons stop marquent la fin de la traduction	347 348
dans différents organismes	292	Les protéines sont fabriquées sur des polyribosomes	349
Les séquences génomiques révèlent à quel moment approximatif	202	Il existe des variations mineures du code génétique standard	349
les éléments transposables se sont déplacés	292	Les inhibiteurs de la synthèse des protéines des procaryotes	0.10
La recombinaison conservative spécifique de site		sont des antibiotiques utiles	351
peut réarranger l'ADN de façon réversible	292	Des mécanismes de contrôle de qualité opèrent pour prévenir	
La recombinaison conservative spécifique de site		la traduction des ARNm endommagés	351
peut être utilisée pour « allumer » ou « éteindre » des gènes	294	Certaines protéines commencent à se replier	
Les recombinases conservatives spécifiques de sites		alors qu'elles sont encore en cours de synthèse	353
sont devenues de puissants outils pour les biologistes	00.4	Les molécules chaperons facilitent le repliement de nombreuses	
cellulaires et du développement	294	protéines	354
Résumé Références	295 296	Les cellules produisent divers types de chaperons	355
Tielerences	230	Les régions hydrophobes exposées fournissent des signaux critiques pour le contrôle de qualité des protéines	357
Chapitre 6 Comment les cellules lisent le génome :		Le protéasome est une protéase compartimentée avec des sites	331
de l'ADN aux protéines	299	actifs isolés	357
		Beaucoup de protéines sont contrôlées par une destruction régulée	359
DE L'ADN À L'ARN	301	Il existe de nombreuses étapes entre l'ADN et les protéines	361
Les molécules d'ARN sont simple brin	302	Résumé	362
La transcription produit un ARN complémentaire à un brin d'ADN	302	LE MONDE ARN ET LES ORIGINES DE LA VIE	362
Les ARN polymérases effectuent la transcription Les cellules produisent différentes catégories de molécules d'ARN	303 305	Des molécules d'ARN simple brin peuvent se replier en structures	002
Des signaux codés dans l'ADN indiquent à l'ARN polymérase	300	extrêmement élaborées	363
où commencer et où finir	306	L'ARN peut à la fois stocker des informations et catalyser	
Les signaux de début et de fin de transcription sont des séquences	000	des réactions chimiques	364
de nucléotides hétérogènes	307	Comment la synthèse des protéines a-t-elle évolué ?	365
L'initiation de la transcription chez les eucaryotes requiert		Toutes les cellules actuelles utilisent l'ADN comme matériel héréditaire	365
de nombreuses protéines	309	Résumé	366
L'ARN polymérase II requiert un ensemble de facteurs		Références	367
de transcription généraux	310	Chapitre 7 Contrôle de l'expression des gènes	369
La polymérase II requiert aussi des protéines activatrices,	0.10		000
médiatrices et modifiant la chromatine	312	UNE VUE D'ENSEMBLE DU CONTRÔLE DES GÈNES	369
L'étape d'élongation de la transcription chez les eucaryotes nécessite des protéines accessoires	313	Les différents types cellulaires d'un organisme multicellulaire	
La transcription produit une tension mécanique superhélicoïdale	314	contiennent le même ADN	369
Chez les eucaryotes, l'élongation de la transcription	014	Les différents types cellulaires synthétisent différents ensembles	070
est étroitement couplée à la maturation de l'ARN	315	d'ARN et de protéines	370
L'addition d'une coiffe à l'ARN est la première modification		Des signaux externes peuvent conduire une cellule à modifier l'expression de ses gènes	372
des pré-ARNm eucaryotes	316	L'expression des gènes peut être contrôlée au niveau	012
L'épissage de l'ARN enlève les séquences d'introns		de nombreuses étapes dans la voie allant de l'ADN	
des pré-ARNm néotranscrits	317	aux ARN puis aux protéines	372
Des séquences de nucléotides signalent l'endroit où l'épissage	210	Résumé	373
doit se produire Le spliceosome effectue l'épissage de l'ARN	319 319	LE CONTRÔLE DE LA TRANSCRIPTION PAR DES PROTÉINES	
Le spliceosome utilise l'hydrolyse de l'ATP pour produire	010	SE FIXANT SUR L'ADN AU NIVEAU DE SÉQUENCES	
une série complexe de réarrangements ARN-ARN	321	SPÉCIFIQUES	373
D'autres propriétés du pré-ARNm et de sa synthèse		La séquence de nucléotides de la double hélice d'ADN	
aident à expliquer le choix de sites d'épissage corrects	321	peut être lue par des protéines	373
La structure de la chromatine affecte l'épissage de l'ARN	323	Les régulateurs transcriptionnels portent des motifs structuraux	
L'épissage de l'ARN présente une souplesse remarquable	323	qui peuvent lire les séquences d'ADN	374
L'épissage de l'ARN catalysé par le spliceosome a probablement		La dimérisation des régulateurs transcriptionnels augmente	075
évolué à partir d'un mécanisme d'autoépissage	324	leur affinité et leur spécificité pour l'ADN Les régulateurs transcriptionnels se fixent à l'ADN de façon coopérative	375 378
Les enzymes de maturation des ARN fabriquent l'extrémité 3'	204	La structure des nucléosomes favorise la fixation coopérative des régulate	
des ARNm des eucaryotes Les ARNm matures eucaryotes sont exportés du noyau sélectivement	324 325	transcriptionnels	379
De nombreux ARN non codants sont également synthétisés	323	Résumé	380
et maturés dans le noyau	327	LES RÉGULATEURS TRANSCRIPTIONNELS FONCTIONNENT	
Le nucléole est une usine qui produit des ribosomes	329	COMME DES INTERRUPTEURS	380
Le noyau contient une variété d'agrégats subnucléaires	331	Le répresseur tryptophane interrompt l'expression de gènes	380
Résumé	333	Les répresseurs « éteignent » les gènes et les activateurs les « allument »	381
DE L'ARN AUX PROTÉINES	333	Un activateur et un répresseur contrôlent l'opéron Lac	382
Une séquence d'ARNm est décodée par groupes de trois nucléotides	334	Des boucles d'ADN peuvent se produire au cours de la régulation	
Les molécules d'ARNt font correspondre les acides aminés		des gènes bactériens	383
aux codons de l'ARNm	334	Des commutateurs complexes ont évolué pour contrôler	
Les ARNt sont modifiés de façon covalente avant de sortir du noyau	336	la transcription des gènes chez les eucaryotes	384
Des enzymes spécifiques couplent chaque acide aminé		Chez les eucaryotes, la région contrôlant un gène comprend	000
à sa molécule d'ARNt particulière	336	un promoteur et plusieurs séquences régulatrices en <i>cis</i>	384
L'édition par les ARNt synthétases assure l'exactitude	338	Les régulateurs transcriptionnels eucaryotes fonctionnent	205
Les acides aminés sont ajoutés à l'extrémité C-terminale de la chaîne polypeptidique en croissance	339	en groupes Les protéines activatrices favorisent l'assemblage de l'ARN	385
Le message ARN est décodé sur les ribosomes	340	polymérase sur le point de départ de la transcription	386
Des facteurs d'élongation font avancer la traduction	5-0	Les activateurs de transcription eucaryotes orientent la modification	500
et améliorent sa précision	343	de la structure de la chromatine locale	386

SOMMAIRE DÉTAILLÉ **xxiii**

The staff of the s		Landard Control Provided and ADM and advanced and a second and	
Les activateurs de la transcription peuvent favoriser la transcription	000	Les bactéries utilisent de petits ARN non codants pour se protéger	40
en libérant l'ARN polymérase des promoteurs	388	contre les virus	43
Les activateurs transcriptionnels agissent en synergie	388	De longs ARN non codants ont des fonctions diverses dans la cellule	43
Les répresseurs transcriptionnels eucaryotes peuvent inhiber	000	Résumé	43
la transcription de différentes façons	389	Références	43
Les séquences isolateurs de l'ADN empêchent les régulateurs	201	Chapitre 8 Analyse des cellules, des molécules	
transcriptionnels eucaryotes d'influencer des gènes distants Résumé	391 392		400
	392	et des systèmes	439
MÉCANISMES DE GÉNÉTIQUE MOLÉCULAIRE QUI CRÉENT		ISOLEMENT ET CULTURE DES CELLULES	44
ET MAINTIENNENT DES TYPES CELLULAIRES SPÉCIALISÉS	392	Les cellules peuvent être isolées à partir des tissus	44
Les commutateurs génétiques complexes qui contrôlent le développement	000	Les cellules peuvent être multipliées en culture	44
de la drosophile sont formés à partir de molécules plus petites	392	Les lignées cellulaires eucaryotes sont largement utilisées	
Le gène Eve de la drosophile est régulé par des contrôles combinatoires	394	en tant que source homogène de cellules	44
Les régulateurs transcriptionnels sont mis en jeu par	005	Les lignées cellulaires d'hybridomes sont des usines produisant	
des signaux extracellulaires	395	des anticorps monoclonaux	44
Le contrôle combinatoire des gènes engendre de nombreux types cellulaires différents	396	Résumé	44
Des types cellulaires spécialisés peuvent être expérimentalement	390	PURIFICATION DES PROTÉINES	44
reprogrammés pour devenir des cellules souches pluripotentes	398	Les cellules peuvent être fractionnées en leurs divers constituants	44
Les combinaisons de régulateurs transcriptionnels maîtres spécifient	390	Les extraits cellulaires fournissent des systèmes accessibles	44.
les types cellulaires en contrôlant l'expression de nombreux gènes	398	pour étudier les fonctions cellulaires	44
Les cellules spécialisées doivent rapidement allumer et éteindre	000	Les protéines peuvent être séparées par chromatographie	44
des ensembles de gènes	399	L'immunoprécipitation est une méthode rapide de purification par affinité	44
Les cellules différenciées conservent leur identité	400	Une étiquette (tag) introduite par génie génétique fournit	
Les circuits de transcription permettent à la cellule d'effectuer		un moyen simple de purifier les protéines	45
des opérations logiques	402	Des systèmes acellulaires purifiés sont nécessaires	
Résumé	404	pour disséquer avec précision les fonctions des molécules	45
MÉCANISMES QUI RENFORCENT LA MÉMOIRE CELLULAIRE		Résumé	45
CHEZ LES VÉGÉTAUX ET LES ANIMAUX	404	ANALYSE DES PROTÉINES	
Les profils de méthylation de l'ADN sont transmissibles	404	Les protéines peuvent être séparées par électrophorèse	45
lors de la division des cellules de vertébrés	404	sur gel de polyacrylamide en SDS	45
Des îlots riches en CG sont associés à de nombreux gènes	101	L'électrophorèse bidimensionnelle en gel permet	40.
chez les mammifères	405	une plus grande séparation des protéines	45
L'empreinte génomique est basée sur la méthylation de l'ADN	407	Des protéines spécifiques peuvent être détectées par transfert	40.
Des modifications de la structure de la chromatine sur toute		puis incubation avec un anticorps	45
la longueur du chromosome peuvent être transmissibles	409	Des mesures hydrodynamiques révèlent la taille et la forme	40
Les mécanismes épigénétiques assurent que des profils stables		d'un complexe de protéines	45
d'expression des gènes puissent être transmis aux cellules filles	411	La spectrométrie de masse est une technique extrêmement	701
Résumé	413	sensible permettant d'identifier des protéines inconnues	45
CONTRÔLES POST-TRANSCRIPTIONNELS	413	Des ensembles de protéines interactives peuvent être identifiés	10
L'atténuation de la transcription entraîne la terminaison	110	par des méthodes biochimiques	45
prématurée de certaines molécules d'ARN	414	Des méthodes optiques permettent de suivre les interactions	
Les commutateurs ribonucléotidiques représentent probablement		entre protéines	45
une forme ancienne de contrôle des gènes	414	La fonction des protéines peut être perturbée sélectivement	
L'épissage alternatif de l'ARN permet de produire différentes		par des petites molécules	45
formes d'une protéine à partir du même gène	415	La structure des protéines peut être déterminée par diffraction	
La définition du gène a été modifiée depuis la découverte de l'épissage		des rayons X	46
alternatif	416	La RMN permet de déterminer la structure d'une protéine en solution	46
Un changement du site de coupure du transcrit ARN		La séquence et la structure des protéines fournissent des indices	
et de l'addition de poly-A peut modifier l'extrémité		sur leur fonction	46
C-terminale d'une protéine	417	Résumé	46
L'édition de l'ARN peut modifier le sens du message ARN	418	ANALYSE ET MANIPULATION DE L'ADN	46
Le transport de l'ARN à partir du noyau peut être régulé	419	Les nucléases de restriction coupent les grandes molécules	
Certains ARNm sont localisés dans des régions particulières du cytosol	421	d'ADN en fragments spécifiques	46
Les régions 5' et 3' non traduites de l'ARNm en contrôlent sa traduction	422	L'électrophorèse en gel sépare les molécules d'ADN de différentes tailles	46
La phosphorylation d'un facteur d'initiation régule globalement	400	Des molécules d'ADN purifiées peuvent être marquées spécifiquement	
la synthèse des protéines L'initiation sur des codons AUG situés en amont du point de départ	423	in vitro par un isotope radioactif ou un marqueur chimique	46
de la traduction peut réguler l'initiation de la traduction eucaryote	424	Les gènes peuvent être clonés en utilisant des bactéries	46
Les sites internes d'entrée des ribosomes apportent	424	Un génome entier peut être représenté dans une bibliothèque d'ADN	469
des opportunités supplémentaires de contrôle de la traduction	425	Les bibliothèques génomiques et d'ADNc ont différents avantages	
Des modifications de la stabilité des ARNm peuvent réguler	720	et inconvénients	47
l'expression des gènes	426	Les réactions d'hybridation des acides nucléiques fournissent un moyen	
La régulation de la stabilité de l'ARNm implique les P-bodies	.20	puissant mais simple de détecter des séquences de nucléotides	
et les granules de stress	427	spécifiques	47
Résumé	428	Les gènes peuvent être clonés in vitro en utilisant la PCR	47
RÉGULATION DE L'EXPRESSION DES GÈNES PAR DES ARN		La PCR est également utilisée dans le diagnostic et les applications	
NON CODANTS	429	médico-légales	47
De petits transcrits d'ARN non codants régulent de nombreux	720	L'ADN et l'ARN peuvent tous deux être séquencés rapidement	47
gènes animaux et végétaux par interférence par l'ARN	429	Pour être utiles, les séquences génomiques doivent être annotées	47
Les ARNmi régulent la traduction des ARNm et leur stabilité	429	Le clonage de l'ADN permet de produire n'importe quelle protéine	
L'interférence par l'ARN (iARN) est aussi utilisée	0	en grandes quantités	48
comme mécanisme de défense par la cellule	431	Résumé	48
L'interférence par l'ARN peut diriger la formation		ÉTUDE DE L'EXPRESSION ET DE LA FONCTION DES GÈNES	48
d'hétérochromatine	432	La génétique classique commence par perturber les processus	
Les ARNpi protègent la lignée germinale contre les éléments transposables	433	cellulaires par mutagenèse au hasard	48
L'interférence par l'ARN est devenue un instrument de recherche		Le criblage génétique identifie les mutants ayant des anomalies	
puissant	433	particulières	48

Les mutations peuvent causer une perte ou un gain de fonction		Les cellules vivantes sont vues de façon nette en microscopie	
des protéines	489	à contraste de phase ou à contraste d'interférence différentielle	533
Les tests de complémentation révèlent si deux mutations		Des techniques digitales (ou électroniques) permettent d'améliorer	
sont situées dans le même gène ou dans deux gènes différents	490	et d'analyser les images	534
On peut déterminer l'ordre dans lequel les produits des gènes		Les prélèvements de tissus sont généralement fixés puis coupés	505
interviennent dans un processus grâce à l'analyse de l'épistasie	490	avant microscopie	535 539
Les mutations responsables d'un phénotype peuvent être identifiées par l'analyse de l'ADN	491	Les anticorps permettent de détecter des molécules spécifiques L'imagerie d'objets complexes en trois dimensions est possible	558
Le séquençage rapide et bon marché de l'ADN a révolutionné	401	en microscopie optique	540
les études de génétique humaine	491	Le microscope confocal produit des coupes optiques en excluant	
Des blocs de polymorphismes liés nous ont été transmis		la lumière qui ne provient pas du plan de focalisation	540
par nos ancêtres	492	Des protéines individuelles peuvent être marquées	
Les polymorphismes peuvent aider à rechercher les mutations	100	avec des étiquettes fluorescentes dans des cellules	E 40
associées aux maladies	493	et des organismes vivants On peut suivre la dynamique des protéines dans les cellules vivantes	542 543
La génomique accélère la découverte de mutations rares qui nous prédisposent à des maladies graves	493	Des indicateurs émetteurs de lumière peuvent mesurer	040
La génétique inverse commence par un gène connu et détermine	430	les rapides variations de concentrations ioniques intracellulaires	546
les processus cellulaires qui dépendent de son fonctionnement	494	Des molécules uniques peuvent être visualisées	
Des animaux et des végétaux peuvent être modifiés génétiquement	495	grâce à la microscopie de fluorescence par réflexion	
Le système bactérien CRISPR a été adapté pour modifier		totale interne (ou microscopie à onde évanescente)	547
les génomes dans une large variété d'espèces	497	Des molécules isolées peuvent être visualisées, touchées	E 40
De grandes collections de mutations obtenues par génie génétique		et déplacées par la microscopie à force atomique Les techniques de fluorescence à super-résolution peuvent	548
représentent un outil de choix pour examiner la fonction de chaque gène d'un organisme	498	surmonter la limite de résolution due à la diffraction	549
L'interférence par l'ARN est un moyen simple et rapide	490	La super-résolution peut également être atteinte en utilisant	0-10
de tester la fonction des gènes	499	les méthodes de localisation d'une seule molécule	551
Les gènes rapporteurs (reporters) révèlent quand et où un gène est exprimé	501	Résumé	554
L'hybridation in situ peut révéler la distribution des ARNm et des ARN		OBSERVATION DES CELLULES ET DES MOLÉCULES	
non codants	502	AU MICROSCOPE ÉLECTRONIQUE	554
L'expression des gènes peut être mesurée individuellement	500	Le microscope électronique permet la résolution de la structure	
par RT-PCR quantitative L'analyse des ARNm par microréseaux ou ARN-seq fournit	502	fine de la cellule	554
un instantané de l'expression génique	503	Les échantillons biologiques nécessitent une préparation	EEE
L'immunoprécipitation pangénomique de la chromatine identifie	000	particulière pour la microscopie électronique Des macromolécules spécifiques peuvent être localisées	555
des sites du génome occupés par des régulateurs transcriptionnels	505	en microscopie électronique par immunomarquage à l'or	556
Les profils ribosomiques révèlent quels ARNm sont traduits		Différentes images d'un objet unique peuvent être associées	000
dans la cellule	505	pour donner une reconstruction tridimensionnelle	557
Les techniques de l'ADN recombinant ont révolutionné la santé humaine	506	Des images de surfaces peuvent être obtenues	
Les végétaux transgéniques sont importants pour l'agriculture Résumé	507 508	par la microscopie électronique à balayage	558
		La coloration négative et la microscopie cryoélectronique permettent	EEC
ANALYSE MATHÉMATIQUE DES FONCTIONS DES CELLULES	509	toutes deux de voir les macromolécules à forte résolution Des images multiples peuvent être combinées pour augmenter	559
Les réseaux de régulation dépendent des interactions moléculaires Les équations différentielles nous aident à prédire les comportements	509	la résolution	561
transitoires	512	Résumé	562
L'activité du promoteur ainsi que la dégradation des protéines influent	0.2	Références	563
sur la vitesse de variation de la concentration en protéine	513		
Le temps nécessaire pour atteindre l'état d'équilibre dépend		Chapitre 10 Structure de la membrane	565
de la durée de vie de la protéine	514	LA BICOUCHE LIPIDIQUE	566
Les méthodes quantitatives sont similaires pour les répresseurs	E 1 1	Les phosphoglycérides, les sphingolipides et les stérols	000
et les activateurs de la transcription Le rétrocontrôle négatif est une stratégie puissante dans la régulation	514	sont les principaux lipides des membranes cellulaires	566
cellulaire	515	Les phospholipides forment spontanément des bicouches	568
Un rétrocontrôle négatif retardé peut induire des oscillations	516	La bicouche lipidique est un fluide à deux dimensions	569
La fixation à l'ADN par un répresseur ou un activateur		La fluidité de la bicouche lipidique dépend de sa composition	571
peut être coopérative	516	Malgré leur fluidité, les bicouches lipidiques peuvent former	570
Le rétrocontrôle positif est important pour les réponses	=	des domaines de compositions différentes Les gouttelettes lipidiques sont entourées par une monocouche	572
de type interrupteur et pour la bistabilité	518	de phospholipides	573
La robustesse est une caractéristique importante des réseaux biologiques Deux régulateurs transcriptionnels qui se fixent sur le même	520	L'asymétrie de la bicouche lipidique a une importance fonctionnelle	573
promoteur de gène peuvent exercer un contrôle combinatoire	520	Des glycolipides sont retrouvés à la surface de toutes les membranes	
Une interaction de contrôle vers l'avant incohérente génère des impulsions	522	plasmiques eucaryotes	575
Une interaction de contrôle vers l'avant cohérente détecte		Résumé	576
des entrées persistantes	522	LES PROTÉINES MEMBRANAIRES	576
Le même réseau peut se comporter différemment	500	Les protéines membranaires peuvent s'associer à la bicouche	
dans différentes cellules en raison d'effets stochastiques	523	lipidique de différentes façons Des ancres lipidiques contrôlent la localisation membranaire	576
Plusieurs approches de calcul peuvent être utilisées pour modéliser les réactions dans les cellules	524	de certaines protéines de signalisation	577
Les méthodes statistiques sont essentielles pour l'analyse	024	Dans la plupart des protéines transmembranaires, la chaîne polypeptidique	011
des données biologiques	524	traverse la bicouche lipidique sous la conformation d'hélice $lpha$	579
Résumé	525	Les hélices α transmembranaires interagissent souvent entre elles	580
Références	526	Certains tonneaux β forment de grands canaux	580
Object that O Object and I'm I'm I'm	F00	De nombreuses protéines membranaires sont glycosylées	582
Chapitre 9 Observation des cellules	529	Les protéines membranaires peuvent être solubilisées et purifiées au moyen de détergents	583
OBSERVATION DES CELLULES AU MICROSCOPE OPTIQUE	529	La bactériorhodopsine est une pompe à protons (H+) tirant	000
La résolution du microscope optique permet de visualiser	-	son énergie de la lumière, composée de sept hélices α	
des détails espacés de 0,2 μm	530	traversant la bicouche lipidique	586
Le bruit de fond des photons ajoute des limites supplémentaires	500	Les protéines membranaires fonctionnent souvent sous la forme	
à la résolution lorsque la luminosité est faible	532	de grands complexes	588

SOMMAIRE DÉTAILLÉ XXV

De nombreuses protéines membranaires diffusent dans le plan	500	Résumé	637
de la membrane Les cellules peuvent confiner des protéines et des lipides	588	Références	638
à des domaines particuliers de la membrane	590	Chapitre 12 Compartiments intracellulaires	
Le cytosquelette cortical confère aux membranes une résistance		et tri des protéines	641
mécanique et restreint la diffusion des protéines membranaires	591	•	
Des protéines qui courbent la membrane déforment les bicouches Résumé	593 594	LA COMPARTIMENTALISATION DES CELLULES Toutos los collulos aucarnotos possident la mêma ensemble	641
Références	595	Toutes les cellules eucaryotes possèdent le même ensemble fondamental d'organites entourés d'une membrane	641
		Les origines, au cours de l'évolution, des organites pourraient	
Chapitre 11 Transport membranaire		permettre d'interpréter leurs relations topologiques	643
de petites molécules et propriétés électriques		Les protéines se déplacent entre les compartiments	645
des membranes	597	de différentes façons Les séquences signal et les récepteurs de tri dirigent les protéines	043
LES PRINCIPES DU TRANSPORT MEMBRANAIRE	597	vers la bonne adresse cellulaire	647
Les bicouches lipidiques dépourvues de protéines sont imperméables	597	La plupart des organites ne peuvent pas être construits de novo :	
aux ions	598	ils nécessitent des informations présentes sur l'organite lui-même	648
Il existe deux classes principales de protéines de transport		Résumé	649
membranaire : les transporteurs et les canaux	598	LE TRANSPORT DES MOLÉCULES ENTRE LE NOYAU	640
Le transport actif s'effectue par l'intermédiaire de transporteurs	599	ET LE CYTOSOL Les complexes du pore nucléaire perforent l'enveloppe nucléaire	649 649
couplés à une source d'énergie Résumé	600	Les signaux de localisation nucléaire dirigent les protéines	040
LES TRANSPORTEURS ET LE TRANSPORT MEMBRANAIRE ACTIF	600	nucléaires vers le noyau	650
Le transport actif peut être entraîné par des gradients ioniques	601	Les récepteurs d'importation nucléaire se fixent à la fois	
Les transporteurs de la membrane plasmique contrôlent le pH cytosolique	604	aux signaux de localisation nucléaire et aux protéines des NPC	652
Une distribution asymétrique des transporteurs dans les cellules		L'exportation nucléaire s'effectue comme l'importation, mais en sens inverse	652
épithéliales sous-tend le transport transcellulaire des solutés	605	La GTPase Ran actionne un transport directionnel à travers le NPC	653
Il existe trois classes de pompes ATP-dépendantes Une ATPase de type P pompe le Ca ²⁺ vers le réticulum	606	Le transport à travers les NPC peut être régulé par le contrôle	
sarcoplasmique des cellules musculaires	606	de l'accès à la machinerie de transport	654
La pompe Na+-K+ de la membrane plasmique établit les gradients		L'enveloppe nucléaire se désagrège pendant la mitose Résumé	656 657
de Na ⁺ et de K ⁺ à travers la membrane plasmique	607	LE TRANSPORT DES PROTÉINES DANS LES MITOCHONDRIES	001
Les transporteurs ABC constituent la plus grande famille de protéines de transport membranaire	609	ET LES CHLOROPLASTES	658
Résumé	611	La translocation dans les mitochondries dépend de séquences	000
LES CANAUX ET LES PROPRIÉTÉS ÉLECTRIQUES		signal et de translocateurs de protéines	659
DES MEMBRANES	611	Les précurseurs des protéines mitochondriales sont importés	000
Les aquaporines sont perméables à l'eau mais imperméables aux ions	612	sous forme d'une chaîne polypeptidique dépliée L'hydrolyse de l'ATP et un potentiel de membrane alimentent	660
Les canaux ioniques sont sélectifs pour un ion et fluctuent		l'importation des protéines dans la matrice	661
entre des états ouvert et fermé	613	Les bactéries et les mitochondries utilisent les mêmes mécanismes	
Le potentiel de membrane des cellules animales dépend principalement des canaux à fuite du K+ et du gradient		pour insérer les porines dans leur membrane externe	662
de K+ à travers la membrane plasmique	615	Il existe plusieurs voies de transport protéique dans la membrane	663
Le potentiel de repos ne diminue que lentement		mitochondriale interne et dans l'espace intermembranaire Deux séquences signal dirigent les protéines vers la membrane	003
lorsque la pompe Na+-K+ est stoppée	615	thylakoïde des chloroplastes	664
La structure tridimensionnelle d'un canal K ⁺ bactérien montre comment un canal ionique peut fonctionner	617	Résumé	666
Des canaux mécanosensibles protègent les cellules bactériennes	017	LES PEROXYSOMES	666
contre les pressions osmotiques extrêmes	619	Les peroxysomes utilisent l'oxygène moléculaire et le peroxyde	000
La fonction d'un neurone dépend de sa structure allongée	620	d'hydrogène (eau oxygénée) pour effectuer les réactions oxydatives Une courte séquence signal dirige l'importation des protéines	666
Les canaux cationiques voltage-dépendants engendrent	621	dans les peroxysomes	667
des potentiels d'action dans les cellules électriquement excitables L'utilisation des channelrhodopsines a révolutionné l'étude	021	Résumé	669
des circuits neuronaux	623	LE RÉTICULUM ENDOPLASMIQUE	669
La myélinisation augmente la vitesse et l'efficacité de la propagation		Le RE est structuralement et fonctionnellement varié	670
des potentiels d'action dans les cellules nerveuses	625	Les séquences signal ont d'abord été découvertes	070
Des enregistrements en patch-clamp indiquent que les canaux ioniques s'ouvrent selon un mode de tout ou rien.	626	sur les protéines importées dans le RE rugueux Une particule de reconnaissance du signal (SRP) dirige	672
Les canaux à cations voltage-dépendants sont apparentés	020	les séquences signal RE-spécifiques vers un récepteur	
d'un point de vue évolutif et structural	626	spécifique de la membrane du RE rugueux	673
Les différents types de neurones expriment des caractéristiques	007	La chaîne polypeptidique traverse un canal aqueux du translocateur	675
stables de propriétés de déclenchement Les canaux ioniques transmetteur-dépendants transforment	627	La translocation à travers la membrane du RE ne requiert	677
les signaux chimiques en signaux électriques au niveau		pas toujours une élongation parallèle de la chaîne polypeptidique Dans les protéines à un seul passage transmembranaire, une seule	677
des synapses chimiques	627	séquence signal interne RE-spécifique reste dans la bicouche	
Les synapses chimiques peuvent être excitatrices ou inhibitrices	629	lipidique sous la forme d'une hélice α qui traverse la membrane	677
Les récepteurs de l'acétylcholine de la jonction neuromusculaire	620	Les combinaisons de signaux de début et d'arrêt de transfert	
sont des canaux à cations transmetteur-dépendants Les neurones contiennent de nombreux types de canaux	630	déterminent la topologie des protéines à multiples passages transmembranaires	679
transmetteur-dépendants	631	Les protéines ancrées dans le RE par la queue sont intégrées	013
Beaucoup de médicaments psychoactifs agissent sur les synapses	631	dans la membrane du RE par un mécanisme spécial	682
La transmission neuromusculaire implique l'activation séquentielle	000	Les chaînes polypeptidiques transloquées se replient	000
de cinq ensembles différents de canaux ioniques Chaque neurone est un dispositif d'intégration complexe	632 633	et s'assemblent dans la lumière du RE rugueux La plupart des protéines synthétisées dans le RE rugueux	682
L'intégration neuronale nécessite l'association d'au moins trois sortes	000	sont glycosylées par addition d'un oligosaccharide commun	
de canaux K ⁺	634	lié par une liaison N-oligosaccharidique	683
La potentialisation à long terme dans l'hippocampe des mammifères		Les oligosaccharides servent d'étiquettes de l'état de repliement	
dépend de l'entrée de Ca ²⁺ dans les canaux à récepteur NMDA	636	d'une protéine	685

Les protéines mal repliées sont exportées hors du RE et dégradées		Les complexes protéiques ESCRT participent à la formation	
dans le cytosol	685	des vésicules intraluminales des corps multivésiculaires	736
Les protéines mal repliées du RE activent une réponse		Le recyclage des endosomes régule la composition	
aux protéines dépliées	686	de la membrane plasmique	737
Certaines protéines membranaires acquièrent une ancre	000	Des cellules phagocytaires spécialisées peuvent ingérer	
de glycosylphosphatidylinositol (GPI), liée de façon covalente Le RE assemble la plupart des bicouches lipidiques	688 689	de grosses particules Résumé	738 740
Résumé	691		740
Références	692	TRANSPORT DEPUIS LE RÉSEAU <i>TRANS</i> -GOLGIEN VERS L'EXTÉRIEUR DE LA CELLULE : L'EXOCYTOSE	741
Chanitra 12 Transport membranaira intracallulaira	695	Beaucoup de protéines et de lipides semblent être transportés	741
Chapitre 13 Transport membranaire intracellulaire	095	automatiquement du réseau de Golgi trans (TGN) vers la surface	
LES MÉCANISMES MOLÉCULAIRES DU TRANSPORT		cellulaire	741
MEMBRANAIRE ET LE MAINTIEN DE LA DIVERSITÉ		Les vésicules sécrétoires bourgeonnent à partir du réseau trans-golgien	742
DES COMPARTIMENTS Il y a divers types de vésicules recouvertes d'un manteau	697 697	Les précurseurs des protéines sécrétoires subissent souvent	
L'assemblage d'un manteau de clathrine entraîne la formation	097	une maturation par protéolyse pendant la formation des vésicules sécrétoires	743
d'une vésicule	697	Les vésicules sécrétoires attendent près de la membrane plasmique	740
Des protéines adaptatrices sélectionnent leur cargaison		jusqu'à ce qu'elles reçoivent le signal de libérer leur contenu	744
dans des vésicules recouvertes de clathrine	698	Pour une exocytose rapide, les vésicules synaptiques sont amorcées	
Les phosphoinositides marquent les organites et les domaines	700	au niveau de la membrane plasmique présynaptique	744
de membrane Les protéines courbant les membranes aident à déformer	700	Les vésicules synaptiques peuvent se former directement	740
la membrane pendant la formation des vésicules	701	à partir des vésicules d'endocytose Les composants membranaires des vésicules sécrétoires	746
Des protéines cytoplasmiques régulent le pincement, la séparation		sont rapidement éliminés de la membrane plasmique	746
et la perte du manteau des vésicules recouvertes	701	Certains événements d'exocytose régulée permettent d'agrandir	
Des GTPases monomériques contrôlent l'assemblage du manteau	703	la membrane plasmique	748
Toutes les vésicules de transport ne sont pas sphériques Les protéines Rab orientent les vésicules vers leur membrane cible	704 705	Les cellules polarisées dirigent les protéines du réseau trans-golgien	
Des cascades de protéines Rab peuvent changer l'identité d'un organite	707	vers le domaine approprié de la membrane plasmique	748
Les SNARE effectuent la fusion membranaire	708	Résumé Références	750 750
Les SNARE qui interagissent doivent être séparées			7 00
avant de pouvoir fonctionner à nouveau	709	Chapitre 14 Conversion de l'énergie :	
Résumé	710	les mitochondries et les chloroplastes	753
TRANSPORT DEPUIS LE RE À TRAVERS L'APPAREIL DE GOLGI Les protéines quittent le RE dans des vésicules de transport	710	LA MITOCHONDRIE	755
recouvertes de COPII	711	La mitochondrie a une membrane externe et une membrane interne	757
Seules les protéines correctement repliées et assemblées		La membrane interne des crêtes contient la machinerie de transport	
peuvent quitter le RE	712	des électrons et de la synthèse d'ATP	758
Les agrégats de vésicules tubulaires effectuent le transport du RE	740	Le cycle de l'acide citrique produit du NADH dans la matrice	758
à l'appareil de Golgi	712 713	Les mitochondries ont de nombreuses fonctions essentielles	750
La voie de récupération vers le RE utilise des signaux de tri De nombreuses protéines sont sélectivement retenues	113	dans le métabolisme cellulaire Un processus chimio-osmotique couple l'énergie d'oxydation	759
dans les compartiments dans lesquels elles fonctionnent	714	et la production d'ATP	761
L'appareil de Golgi est formé d'une série ordonnée de compartiments	715	L'énergie provenant de l'oxydation est stockée sous la forme	
Les chaînes d'oligosaccharides subissent une maturation	740	d'un gradient électrochimique	762
dans l'appareil de Golgi Les protéoglycanes sont assemblés dans l'appareil de Golgi	716 718	Résumé	763
Quel est l'intérêt de cette glycosylation?	719	LES POMPES À PROTONS DE LA CHAÎNE DE TRANSPORT	
Le transport à travers l'appareil de Golgi peut se faire		DES ÉLECTRONS	763
par maturation des citernes	720	Le potentiel redox est une mesure de l'affinité des électrons	763
Des protéines de la matrice du Golgi facilitent l'organisation de l'empilement	721	Les transferts d'électrons libèrent de grandes quantités d'énergie Les ions métalliques de transition et les quinones acceptent	764
Résumé	722	et libèrent des électrons aisément	764
TRANSPORT DEPUIS LE RÉSEAU TRANS-GOLGIEN	700	Le NADH transfère ses électrons à l'oxygène à travers trois gros	
VERS LES LYSOSOMES Les lysosomes sont les sites principaux de la digestion intracellulaire	722 722	complexes enzymatiques encastrés dans la membrane interne	766
Les lysosomes sont hétérogènes	723	Le complexe de la NADH déshydrogénase contient des modules	700
Les vacuoles végétales et fongiques sont des lysosomes		séparés pour le transport des électrons et le pompage des protons La cytochrome c réductase capte et libère des protons sur le côté	768
remarquablement polyvalents	724	opposé de la membrane des crêtes, pompant ainsi des protons	768
Les matériaux sont livrés aux lysosomes par de multiples voies	725	Le complexe de la cytochrome c oxydase pompe des protons	
L'autophagie dégrade les protéines et les organites indésirables Un récepteur du mannose 6-phosphate trie les hydrolases	726	et réduit O ₂ en utilisant un centre catalytique fer-cuivre	770
lysosomales dans le réseau trans-golgien	727	La chaîne respiratoire forme un supercomplexe dans la membrane	
Des anomalies de la GlcNAc phosphotransférase provoquent		des crêtes	772
une maladie du stockage lysosomal chez l'homme	728	Les protons peuvent se déplacer rapidement à travers les protéines le long de voies prédéfinies	773
Certains lysosomes et corps multivésiculaires subissent une exocytose Résumé	729 729	Résumé	774
	129	LA PRODUCTION D'ATP DANS LES MITOCHONDRIES	774
TRANSPORT DANS LA CELLULE À PARTIR DE LA MEMBRANE PLASMIQUE : L'ENDOCYTOSE	730	La grande valeur négative de la ΔG de l'hydrolyse de l'ATP	,,,
Les vésicules de pinocytose se forment à partir de puits recouverts	730	est utile pour la cellule.	774
(coated pits) de la membrane plasmique	731	L'ATP synthase est une nanomachine qui produit l'ATP	
Les vésicules de pinocytose ne sont pas toutes recouvertes de clathrine	731	par catalyse rotatoire	776
Les cellules importent sélectivement des macromolécules	700	Les turbines entraînées par des protons sont d'origine ancienne	777
extracellulaires par une endocytose couplée à des récepteurs Des protéines spécifiques sont récupérées des endosomes	732	Les crêtes des mitochondries aident à rendre la synthèse d'ATP efficace Des protéines de transport spéciales échangent l'ATP	778
précoces et réexpédiées dans la membrane plasmique	734	et l'ADP à travers la membrane interne	779
Les récepteurs de signalisation de la membrane plasmique		Les mécanismes chimio-osmotiques sont d'abord apparus	
sont régulés négativement par dégradation dans les lysosomes	735	chez les bactéries	780
Les endosomes précoces maturent dans les endosomes tardifs	735	Résumé	782

SOMMAIRE DÉTAILLÉ **xxvii**

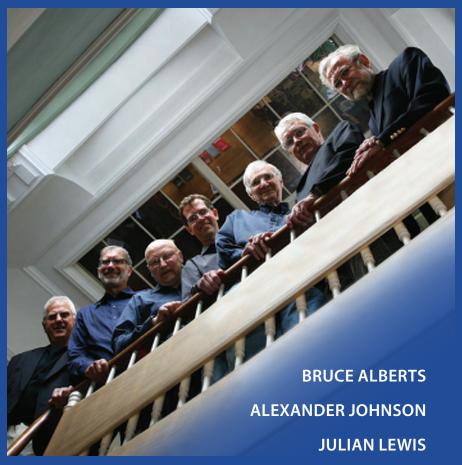
LES CHLOROPLASTES ET LA PHOTOSYNTHÈSE Les chloroplastes ressemblent aux mitochondries	782	La vitesse d'une réponse dépend de la vitesse de renouvellement (turnover) des molécules signal	825
mais ont un compartiment supplémentaire : les thylakoïdes	782	Les cellules peuvent répondre immédiatement à un signal	
Les chloroplastes captent l'énergie de la lumière solaire et l'utilisent pour fixer le carbone	783	qui n'augmente que progressivement Des rétrocontrôles positifs peuvent générer des réponses	827
La fixation du carbone utilise l'ATP et le NADPH pour convertir le CO ₂ en sucres	784	tout-ou-rien Le rétrocontrôle négatif est un aspect courant des systèmes	828
Les sucres générés par la fixation du carbone peuvent être stockés	704	de signalisation	829
sous forme d'amidon ou consommés pour produire de l'ATP	785	Les cellules peuvent ajuster leur sensibilité à un signal	830
Les membranes thylakoïdes des chloroplastes contiennent les complexes		Résumé	831
de protéines requis pour la photosynthèse et la génération d'ATP	786	LA SIGNALISATION PAR LES RÉCEPTEURS COUPLÉS	
Les complexes chlorophylle-protéines peuvent transférer		AUX PROTÉINES G	832
soit de l'énergie d'excitation soit des électrons	787	Les protéines G trimériques relaient les signaux émis par les GPCR	832
Un photosystème est constitué d'un complexe d'antenne	700	Certaines protéines G régulent la production de l'AMP cyclique	833
et d'un centre de réaction	788	La protéine kinase dépendante de l'AMP cyclique (PKA)	
La membrane thylakoïde contient deux photosystèmes différents fonctionnant en série	789	est responsable de la plupart des effets de l'AMP cyclique	834
Le photosystème II utilise un groupement manganèse pour retirer	700	Certaines protéines G effectuent leur signalisation par l'intermédiaire de phospholipides	836
des électrons de l'eau	790	Le Ca ²⁺ fonctionne comme messager intracellulaire ubiquitaire	838
Le complexe du cytochrome b_6 - f connecte le photosystème II		Un rétrocontrôle peut créer des vagues et des oscillations de Ca ²⁺	838
au photosystème l	791	Les protéine kinases Ca ²⁺ /calmoduline-dépendantes relaient	000
Le photosystème I effectue la deuxième étape de séparation		de nombreuses réponses aux signaux Ca ²⁺	840
de charge du schéma en Z	792	Certaines protéines G régulent directement des canaux ioniques	843
L'ATP synthase du chloroplaste utilise le gradient de protons généré		L'odorat et la vision dépendent de GPCR qui régulent des canaux	
par les réactions photosynthétiques de la phase lumineuse	793	ioniques à vanne contrôlée par les nucléotides cycliques	843
pour produire de l'ATP Tous les centres de réaction de la photosynthèse ont évolué	193	L'oxyde nitrique est un médiateur de signalisation gazeux	0.40
à partir d'un ancêtre commun	793	qui passe entre les cellules	846
La force proton-motrice pour la production d'ATP est la même	. 00	Les seconds messagers et les cascades enzymatiques amplifient les signaux	848
dans les mitochondries et les chloroplastes	794	La désensibilisation des GPCR dépend de leur phosphorylation	848
Les mécanismes chimio-osmotiques ont évolué par étapes	794	Résumé	849
En exploitant une source intarissable de pouvoir réducteur, les bactéries		LA SIGNALISATION PAR LES RÉCEPTEURS COUPLÉS	
photosynthétiques ont surmonté un obstacle évolutif majeur	796	À UNE ENZYME	850
Les chaînes photosynthétiques de transport d'électrons des cyanobactéries	S	Les récepteurs à tyrosine kinase activés (RTK) s'auto-phosphorylent	850
ont produit l'oxygène atmosphérique et ont permis de nouvelles	700	Les tyrosines phosphorylées des RTK servent de site d'amarrage	
formes de vie Résumé	796 798	aux protéines de signalisation intracellulaire	852
	130	Les protéines à domaine SH2 se fixent aux tyrosines phosphorylées	852
LES SYSTÈMES GÉNÉTIQUES DES MITOCHONDRIES	000	La GTPase Ras relaie les signaux de la plupart des RTK	854
ET DES CHLOROPLASTES	800	Ras active un module de signalisation MAP kinase	855
Les systèmes génétiques des mitochondries et des chloroplastes ressemblent à ceux des procaryotes	800	Des protéines d'échafaudage réduisent les interférences	857
Au cours du temps, les mitochondries et les chloroplastes ont exporté	000	entre des modules parallèles de MAP kinases Les GTPases de la famille Rho couplent fonctionnellement	007
la plupart de leurs gènes au noyau par transfert de gène	801	les récepteurs de surface au cytosquelette	858
La fission et la fusion des mitochondries sont des processus		La PI 3-kinase fournit des sites d'amarrage lipidiques	
topologiquement complexes	802	dans la membrane plasmique	859
Les mitochondries des animaux contiennent le plus simple		La voie de signalisation PI-3-kinase/Akt stimule la survie	
des systèmes génétiques connus	803	et la croissance des cellules animales	860
Les mitochondries ont une utilisation souple des codons	004	Les RTK et les GPCR activent des voies de signalisation chevauchantes	861
et peuvent avoir une variante du code génétique	804 806	Certains récepteurs couplés à des enzymes s'associent	862
Les chloroplastes et les bactéries ont des ressemblances frappantes Les gènes des organites ont une transmission maternelle	000	à des tyrosine kinases cytoplasmiques Les récepteurs des cytokines activent la voie de signalisation JAK-STAT	863
chez les animaux et les végétaux	807	Des protéine tyrosine phosphatases inversent les phosphorylations	000
Des mutations dans l'ADN mitochondrial peuvent provoquer	001	sur les tyrosines	864
des maladies héréditaires graves	807	Les protéines de signalisation de la superfamille des TGFβ agissent par	
L'accumulation de mutations dans l'ADN mitochondrial est un facteur		l'intermédiaire de récepteurs à sérine/thréonine kinases et de Smad	865
de vieillissement	808	Résumé	866
Pourquoi les mitochondries et les chloroplastes maintiennent-ils un système	000	LES VOIES DE SIGNALISATION ALTERNATIVES	
séparé coûteux pour la transcription de l'ADN et la traduction?	808	DANS LA RÉGULATION DES GÈNES	867
Résumé Références	000	DANG LA NEGOLATION DES GENES	$\sim \sim -$
nelelelices	809	Le récepteur protéique Notch est un régulateur transcriptionnel latent	867
	809 810	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent	
Chapitre 15 La signalisation cellulaire	810	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines	867
	810 813	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève	868
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE	810	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened	
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues	810 813 813	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent	868 871
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances	810 813 813 814	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB	868
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques	810 813 813	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent	868 871
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre	810 813 813 814 815	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels	868 871 873
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires	810 813 813 814 815 816	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands	868 871 873
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre	810 813 813 814 815	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer	868 871 873 874 876
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire	810 813 813 814 815 816	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie	868 871 873 874 876 878
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis	813 813 813 814 815 816 818	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé	868 871 873 874 876 878 879
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis dans un cytoplasme bruyant	810 813 813 814 815 816 818	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé LA SIGNALISATION CHEZ LES VÉGÉTAUX	868 871 873 874 876 878
Les PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis dans un cytoplasme bruyant Des complexes de signalisation intracellulaire se forment	813 813 814 815 816 818 819	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé LA SIGNALISATION CHEZ LES VÉGÉTAUX La multicellularité et la communication cellulaire ont évolué	868 871 873 874 876 878 879 880
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis dans un cytoplasme bruyant Des complexes de signalisation intracellulaire se forment sur les récepteurs activés	813 813 813 814 815 816 818	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé LA SIGNALISATION CHEZ LES VÉGÉTAUX La multicellularité et la communication cellulaire ont évolué indépendamment chez les végétaux et les animaux	868 871 873 874 876 878 879
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis dans un cytoplasme bruyant Des complexes de signalisation intracellulaire se forment sur les récepteurs activés Des domaines modulaires d'interaction créent des interactions	813 813 814 815 816 818 819 820 822	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé LA SIGNALISATION CHEZ LES VÉGÉTAUX La multicellularité et la communication cellulaire ont évolué indépendamment chez les végétaux et les animaux Les récepteurs à sérine/thréonine kinases sont la classe la plus importante	868 871 873 874 876 878 879 880
LES PRINCIPES DE LA SIGNALISATION CELLULAIRE Les signaux extracellulaires peuvent agir sur de courtes ou de longues distances Les molécules signal extracellulaires se fixent à des récepteurs spécifiques Chaque cellule est programmée pour répondre à des combinaisons spécifiques de signaux extracellulaires Il existe trois grandes classes de récepteurs protéiques de la surface cellulaire Les récepteurs de la surface cellulaire relaient des signaux par l'intermédiaire de molécules de signalisation intracellulaire Les signaux intracellulaires doivent être spécifiques et précis dans un cytoplasme bruyant Des complexes de signalisation intracellulaire se forment sur les récepteurs activés	813 813 814 815 816 818 819	Le récepteur protéique Notch est un régulateur transcriptionnel latent Les protéines Wnt se fixent aux récepteurs Frizzled et inhibent la dégradation des β-caténines Les protéines Hedgehog se fixent à Patched, ce qui lève son inhibition de Smoothened De nombreux stimuli de stress et d'inflammation agissent par une voie de signalisation dépendante des NF-κB Les récepteurs nucléaires sont des régulateurs transcriptionnels modulés par leurs ligands Les horloges circadiennes contiennent des boucles de rétrocontrôle négatif qui contrôlent l'expression des gènes Trois protéines dans un tube à essai peuvent reconstituer l'horloge circadienne d'une cyanobactérie Résumé LA SIGNALISATION CHEZ LES VÉGÉTAUX La multicellularité et la communication cellulaire ont évolué indépendamment chez les végétaux et les animaux	868 871 873 874 876 878 879 880

Le positionnement régulé des transporteurs d'auxine détermine	000	LES FILAMENTS INTERMÉDIAIRES ET LES SEPTINES	944
l'architecture de la croissance des végétaux Les phytochromes détectent la lumière rouge et les cryptochromes	882	La structure des filaments intermédiaires associe une fasciculation latérale et une torsion de surenroulements	945
la lumière bleue	883	Les filaments intermédiaires procurent une stabilité mécanique	
Résumé	885	aux cellules animales	946
Références	886	Des protéines linker (protéines de liaison) connectent les filaments du cytosquelette et peuvent ponter l'enveloppe nucléaire	948
Chapitre 16 Le cytosquelette	889	Les septines forment des filaments qui régulent la polarité cellulaire Résumé	949
FONCTION ET ORIGINE DU CYTOSQUELETTE	889	LA POLARISATION ET LA MIGRATION DES CELLULES	951
Les filaments du cytosquelette s'adaptent pour former des structures dynamiques ou stables	890	De nombreuses cellules peuvent ramper sur un support solide	951
Le cytosquelette détermine l'organisation et la polarité de la cellule	892	La protrusion de la membrane plasmique est actionnée	
Les filaments s'assemblent à partir de sous-unités protéiques	000	par la polymérisation de l'actine	951
qui leur confèrent des propriétés physiques et dynamiques spécifiques Des protéines accessoires et des moteurs régulent les filaments		Les lamellipodes contiennent toute la machinerie nécessaire à la motilité cellulaire La contraction de la myosine et l'adhésion de la cellule	953
du cytosquelette Chez les bactéries, l'organisation et la division des cellules dépendent	894	au substrat permettent à la cellule de ramper vers l'avant	954
d'homologues des protéines du cytosquelette des eucaryotes	896	La polarisation de la cellule est contrôlée par les membres	
Résumé	898	de la famille de protéines Rho	955
L'ACTINE ET LES PROTÉINES SE FIXANT À L'ACTINE	898	Des signaux extracellulaires activent les trois membres de la famille de protéines Rho	958
Les sous-unités de tubuline et d'actine s'assemblent tête-à-queue pour créer des filaments polaires flexibles	898	Des signaux externes peuvent dicter la direction de la migration cellulaire	958
La nucléation est l'étape limitante de la vitesse de formation	030	La communication entre les éléments du cytosquelette coordonne	0.50
des filaments d'actine	899	la polarisation et la locomotion de la cellule entière Résumé	959
Les filaments d'actine ont deux extrémités distinctes qui croissent	900	Références	960
à des vitesses différentes L'hydrolyse d'ATP dans les filaments d'actine conduit au phénomène	900	Charitys 47 La suela callulaiva	000
du « tapis roulant » à l'état d'équilibre	901	Chapitre 17 Le cycle cellulaire	963
Les fonctions des filaments d'actine sont inhibées par des agents	004	VUE D'ENSEMBLE DU CYCLE CELLULAIRE	963
chimiques qui, soit stabilisent soit déstabilisent les polymères Les protéines se fixant à l'actine influencent la dynamique	904	Le cycle cellulaire des eucaryotes est généralement divisé	00/
et l'organisation des filaments	904	en quatre phases Le contrôle du cycle cellulaire est similaire chez tous les eucaryotes	964 965
La disponibilité des monomères contrôle l'assemblage des filaments d'actine	906	La progression le long du cycle cellulaire peut être étudiée	000
Des facteurs de nucléation de l'actine accélèrent la polymérisation et génèrent des filaments droits ou ramifiés	906	de différentes façons	966
Des protéines se fixant aux filaments d'actine modifient	300	Résumé	967
la dynamique des filaments	907	LE SYSTÈME DE CONTRÔLE DU CYCLE CELLULAIRE	967
Des protéines de rupture régulent la dépolymérisation	000	Le système de contrôle du cycle cellulaire déclenche les événements majeurs du cycle cellulaire	967
des filaments d'actine Des réseaux de filaments d'actine d'ordre supérieur influencent	909	Le système de contrôle du cycle cellulaire repose sur des protéine kinases	
les propriétés mécaniques et de signalisation de la cellule	911	dépendantes des cyclines (Cdk) qui sont activées cycliquement	968
Les bactéries peuvent détourner le cytosquelette d'actine de l'hôte	913	L'activité Cdk peut être réprimée par des phosphorylations inhibitrices et des protéines inhibitrices des Cdk (CKI)	970
Résumé	914	Une protéolyse régulée déclenche la transition métaphase-anaphase	970
LA MYOSINE ET L'ACTINE Les moteurs protéiques associés à l'actine font partie	915	Le contrôle du cycle cellulaire dépend aussi de la régulation	
de la superfamille des myosines	915	de la transcription Le système de contrôle du cycle cellulaire fonctionne comme	971
La myosine génère de la force en couplant l'hydrolyse de l'ATP		un réseau d'interrupteurs biochimiques	972
à des changements de conformation Le glissement de la myosine II le long des filaments d'actine	916	Résumé	974
provoque la contraction musculaire	916	LA PHASE S	974
Une augmentation soudaine de la concentration cytosolique		S-Cdk initie la réplication de l'ADN une seule fois par cycle	974
en Ca ²⁺ initie la contraction musculaire	920	La duplication des chromosomes requiert la duplication des structures chromatiniennes	975
Le muscle cardiaque est une machine de grande précision L'actine et la myosine ont toute une variété de fonctions	923	Les cohésines maintiennent ensemble les deux chromatides sœurs	977
dans les cellules non musculaires	923	Résumé	977
Résumé	925	LA MITOSE	978
MICROTUBULES	925	M-Cdk initie l'entrée en mitose La déphosphorylation active M-Cdk au commencement de la mitose	978 978
Les microtubules sont des tubes creux faits de protofilaments Les microtubules présentent une instabilité dynamique	926 927	Les condensines participent à la configuration des chromosomes	310
Les fonctions des microtubules sont inhibées par des agents	021	dupliqués nécessaire à leur séparation	979
pharmacologiques stabilisant ou déstabilisant les polymères	929	Le fuseau mitotique est une machine basée sur les microtubules	982
Un complexe de protéines contenant de la tubuline γ est responsable de la nucléation des microtubules	929	Des moteurs protéiques dépendant des microtubules gouvernent l'assemblage et le fonctionnement du fuseau mitotique	983
Dans les cellules animales, les microtubules émanent du centrosome	930	Plusieurs mécanismes collaborent à l'assemblage d'un fuseau mitotique	000
Des protéines se fixant aux microtubules modulent la dynamique		bipolaire	984
et l'organisation des filaments Les protéines se fixant aux extrémités plus des microtubules	932	La duplication du centrosome se produit tôt dans le cycle cellulaire L'assemblage du fuseau pendant la prophase est initié par M-Cdk	984 985
modulent la dynamique des microtubules et leurs attachements	932	Dans les cellules animales, l'assemblage du fuseau ne peut	000
Des protéines séquestrant la tubuline et des protéines de rupture		s'achever qu'après la destruction de l'enveloppe nucléaire	985
des microtubules déstabilisent les microtubules	935	L'instabilité des microtubules augmente fortement au cours de la mitose	986
Deux types de moteurs protéiques se déplacent le long des microtubules Les microtubules et les moteurs déplacent les organites et les vésicules	936 938	Les chromosomes mitotiques facilitent l'assemblage d'un fuseau bipolaire Les kinétochores attachent les chromatides sœurs au fuseau	987
La construction d'assemblages complexes de microtubules requiert		La bi-orientation est effectuée par tâtonnements	988
une dynamique des microtubules et des moteurs protéiques	940	Des forces multiples agissent sur les chromosomes positionnés sur le fuseau	990
Les cils motiles et les flagelles sont des structures formées de microtubules et de dynéines	941	Le complexe APC/C déclenche la séparation des chromatides sœurs et l'achèvement de la mitose	992
Le cil primaire effectue d'importantes fonctions de signalisation		Les chromosomes non attachés bloquent la séparation des chromatides	552
dans les cellules animales	942	sœurs : le point de contrôle (checkpoint) de l'assemblage du fuseau	993
Résumé	943	Les chromosomes ségrègent au cours de l'anaphase A et B	994

SOMMAIRE DÉTAILLÉ **xxix**

Les chromosomes ségrégés sont empaquetés dans les noyaux		Les desmosomes donnent une force mécanique	
fils à la télophase	995	aux épithéliums	104
Résumé	995	Les jonctions serrées forment un joint imperméable entre les cellules	104
		· · · · · · · · · · · · · · · · · · ·	104
LA CYTOKINÈSE	996	et une barrière entre les domaines de la membrane plasmique	104
L'actine et la myosine II de l'anneau contractile produisent		Les jonctions serrées contiennent des brins de protéines	404
les forces nécessaires à la cytokinèse	996	d'adhésion transmembranaires	104
L'activation locale de RhoA déclenche l'assemblage		Des protéines d'échafaudage organisent les complexes	
et la contraction de l'anneau contractile	997	protéiques jonctionnels	104
Les microtubules du fuseau mitotique déterminent le plan		Les jonctions communicantes couplent les cellules,	
de division de la cellule animale	997	électriquement, et métaboliquement	105
Le phragmoplaste guide la cytokinèse des végétaux supérieurs	1000	Le connexon d'une jonction communicante est constitué	
Les organites entourés de membranes doivent être distribués		de six sous-unités de connexines transmembranaires	105
aux cellules filles pendant la cytokinèse	1001	Chez les végétaux, les plasmodesmes remplissent de nombreuses	
Certaines cellules repositionnent leur fuseau pour se diviser asymétrique		fonctions similaires à celles des jonctions communicantes	105
1001		Les sélectines sont des intermédiaires transitoires des adhésions	
La mitose peut avoir lieu sans cytokinèse	1002	intercellulaires dans le courant sanguin	105
La phase G ₁ est un état stable d'inactivité des Cdk	1002	Des membres de la superfamille des immunoglobulines sont	100
Résumé	1004	les effecteurs d'une adhésion intercellulaire indépendante du Ca ²⁺	105
		•	105
LA MÉIOSE	1004	Résumé	
La méiose comprend deux tours de ségrégation des chromosomes	1004	LA MATRICE EXTRACELLULAIRE DES ANIMAUX	105
Les homologues dupliqués forment des paires pendant		La matrice extracellulaire est produite et orientée	
la prophase de la méiose I	1006	par les cellules qui l'habitent	105
L'appariement des homologues culmine lors de la formation		Les chaînes de glycosaminoglycanes (GAG) occupent	
du complexe synaptonémal	1006	beaucoup d'espace et forment des gels hydratés	105
La ségrégation des homologues dépend de plusieurs		L'acide hyaluronique comble les espaces au cours de la morphogenèse	
caractéristiques spécifiques de la méiose I	1008	et de la réparation des tissus	105
Le crossing-over est très régulé	1009	Les protéoglycanes sont composés de chaînes de GAG liées	
Les erreurs sont fréquentes au cours de la méiose	1010	de façon covalente à une protéine cœur	105
Résumé	1010	Les collagènes sont les principales protéines de la matrice	100
LE CONTRÔLE DE LA DIVISION CELLULAIRE		extracellulaire	106
ET DE LA CROISSANCE CELLULAIRE	1010		100
Les agents mitogènes stimulent la division cellulaire	1010	Les collagènes sécrétés associés aux fibrilles aident	400
	1011	à organiser les fibrilles	106
Les cellules peuvent entrer dans un état de non-division spécialisé	1012	Les cellules participent à l'organisation des fibrilles de collagène	
Les mitogènes stimulent les activités des G ₁ -Cdk et G ₁ /S-Cdk	1012	qu'elles sécrètent en exerçant une tension mécanique	
Les dommages de l'ADN bloquent la division cellulaire :	1014	sur la matrice	106
la réponse aux dommages de l'ADN	1014	L'élastine donne aux tissus leur élasticité	106
De nombreuses cellules humaines ont une limitation intrinsèque	1010	La fibronectine et d'autres glycoprotéines à multidomaines	
du nombre de divisions qu'elles peuvent effectuer	1016	participent à l'organisation de la matrice	106
Excepté dans les cellules cancéreuses, des signaux de prolifération		La fibronectine se fixe à des intégrines	106
anormaux entraînent l'arrêt du cycle ou l'apoptose	1016	Les tensions mécaniques exercées par les cellules contrôlent	
La prolifération cellulaire est accompagnée d'une croissance cellulaire	1016	l'assemblage des fibrilles de fibronectine	106
Les cellules qui prolifèrent coordonnent généralement		La lame basale est une forme spécialisée de matrice extracellulaire	106
leur croissance et leur division	1018	La laminine et le collagène de type IV sont des composants	
Résumé	1018	majeurs de la lame basale	106
Références	1019	Les lames basales ont des fonctions variées	107
01 11 401 1 11 11	1001	Les cellules doivent pouvoir dégrader la matrice aussi bien	107
Chapitre 18 La mort cellulaire	1021	, ,	107
L'apoptose élimine les cellules indésirables	1021	qu'elles la produisent	107.
L'apoptose dépend d'une cascade de réactions protéolytiques		Les protéoglycanes et les glycoprotéines de la matrice	107
intracellulaires médiée par les caspases	1022	peuvent réguler les activités des protéines sécrétées	107
Les « récepteurs de mort » de la surface de la cellule activent		Résumé	107
la voie extrinsèque de l'apoptose	1024	LES JONCTIONS CELLULE-MATRICE	107
La voie intrinsèque de l'apoptose repose sur les mitochondries	1025	Les intégrines sont des hétérodimères transmembranaires	
Les protéines Bcl2 régulent la voie intrinsèque de l'apoptose	1025	qui relient la matrice extracellulaire au cytosquelette	107
Les IAP aident à contrôler les caspases	1029	Des anomalies des intégrines sont responsables de nombreuses	
Les facteurs de survie extracellulaires inhibent l'apoptose par différents	.020	maladies génétiques	107
moyens	1029	Les intégrines peuvent passer d'une conformation active	
Les phagocytes éliminent les cellules apoptotiques	1030	à une conformation inactive	107
Qu'elle soit excessive ou insuffisante, l'apoptose peut contribuer	1000	Les intégrines se regroupent pour établir des adhésions fortes	107
à des maladies	1031	Les attachements à la matrice extracellulaire par l'intermédiaire	107
Résumé	1031		1079
	1032	des intégrines contrôlent la prolifération et la survie cellulaire	107
Références	1033	Les intégrines recrutent des protéines de signalisation	107
Chapitre 19 Les jonctions cellulaires et la matrice		intracellulaires aux sites d'adhésion cellule-matrice	107
	1005	Les adhésions cellule-matrice réagissent aux forces mécaniques	108
extracellulaire	1035	Résumé	108
LES JONCTIONS INTERCELLULAIRES	1038	LA PAROI CELLULAIRE VÉGÉTALE	108
	1038	La composition de la paroi cellulaire dépend du type cellulaire	108
Les cadhérines forment une famille diversifiée de molécules d'adhésion	1038	La résistance à la tension de la paroi cellulaire	
Les cadhérines effectuent des adhésions homophiles	1030	permet aux cellules végétales de développer une pression	
Les adhésions intercellulaires cadhérine-dépendantes guident	1040	de turgescence	108
l'organisation des tissus en développement	1040	La paroi cellulaire primaire est constituée de microfibrilles de cellulose	. 50
Les transitions mésenchyme-épithélium dépendent du contrôle	1040		108
des cadhérines	1042	entrelacées en un réseau de polysaccharides de pectine	100
Les caténines relient les cadhérines classiques au cytosquelette d'actine	1042	Les dépôts orientés sur les parois contrôlent la croissance	100
Les jonctions adhérentes répondent à des forces générées	1040	des cellules végétales	108
par le cytosquelette d'actine	1042	Les microtubules orientent les dépôts de la paroi cellulaire	108
Le remodelage des tissus dépend de la coordination de l'adhésion intercellulaire et des contractions dues à l'actine	1043	Résumé Références	108
imercendaire er des contractions ques a l'actine	1043	Deterribes	I U K

Chapitre 20 Le cancer	1091	Des dosages sensibles peuvent détecter les agents cancérigènes	440=
LE CANCER EN TANT QUE PROCESSUS MICRO-ÉVOLUTIF	1091	qui endommagent l'ADN Cinquante pour cent des cancers pourraient être évités	1127
Les cellules cancéreuses court-circuitent les contrôles normaux		par des changements du mode de vie	1128
de la prolifération et colonisent les autres tissus	1092	Des virus et d'autres infections provoquent une proportion	
La plupart des cancers dérivent d'une seule cellule anormale Les cellules cancéreuses contiennent des mutations somatiques	1093 1094	significative de cancers chez l'homme	1129
Une seule mutation n'est pas suffisante pour transformer	1094	Les cancers du col de l'utérus peuvent être évités	4404
une cellule normale en cellule cancéreuse	1094	par la vaccination contre des papillomavirus humains	1131
Les cancers se développent progressivement à partir de cellules		Les agents infectieux peuvent causer le cancer de différentes façons La recherche sur le traitement du cancer est difficile	1132
de plus en plus aberrantes	1095	mais non sans espoir	1132
La progression tumorale est due à des cycles successifs de changemen		Les traitements traditionnels exploitent l'instabilité génétique	1102
aléatoires transmissibles suivis de sélection naturelle	1096	et la perte des points de contrôle du cycle cellulaire	
Les cellules cancéreuses humaines sont génétiquement instables Les cellules cancéreuses démontrent un contrôle de croissance anormal	1097 1098	des cellules cancéreuses	1132
Les cellules cancéreuses de montrent un controle de croissance anormal Les cellules cancéreuses ont un métabolisme glucidique modifié	1098	De nouveaux médicaments peuvent tuer des cellules cancéreuses	
Les cellules cancéreuses ont une capacité anormale de survivre	1000	de manière sélective par ciblage de mutations spécifiques	1133
face au stress et aux dommages de l'ADN	1099	Les inhibiteurs de PARP tuent les cellules cancéreuses	
Les cellules cancéreuses humaines échappent à la limite		qui ont des défauts dans les gènes <i>Brca1</i> ou <i>Brca2</i>	1133
programmée de la prolifération cellulaire	1099	On peut concevoir des petites molécules pour inhiber	1105
Le microenvironnement de la tumeur influence le développement du cancer	1100	spécifiquement des protéines oncogéniques	1135
Les cellules cancéreuses peuvent survivre et proliférer	1101	De nombreux cancers peuvent être traités en augmentant la réponse immunitaire contre une tumeur spécifique	1137
dans un environnement étranger De nombreuses propriétés contribuent généralement à la croissance	1101	Les cancers développent des résistances aux thérapies	1139
cancéreuse	1103	Les polythérapies peuvent réussir là où les traitements	
Résumé	1103	avec un seul médicament à la fois échouent	1139
LES GÈNES CRITIQUES DU CANCER :		Il existe maintenant des outils permettant de concevoir	
COMMENT ON LES IDENTIFIE ET CE QU'ILS FONT	1104	des polythérapies adaptées à chaque patient particulier	1140
L'identification des mutations dans les gènes critiques	1101	Résumé	1141
pour le cancer a traditionnellement requis des méthodes		Références	1142
différentes selon qu'il s'agit de mutations avec gain de fonction		Chapitre 21 Développement des organismes	
ou avec perte de fonction	1104	multicellulaires	1115
Les rétrovirus peuvent se comporter en vecteurs d'oncogènes	4405	multicellulaires	1145
altérant le comportement cellulaire Des recherches d'oncogènes par des approches différentes	1105	VUE D'ENSEMBLE DU DÉVELOPPEMENT	1147
ont convergé vers le même gène : Ras	1106	Des mécanismes conservés permettent d'établir le plan	
Les gènes mutés dans le cancer peuvent être rendus hyperactifs	1100	de base du corps d'un animal	1147
par plusieurs voies différentes	1106	Le potentiel de développement des cellules se restreint progressivement	
Des études de syndromes rares de cancers héréditaires ont permis		La mémoire cellulaire sous-tend la prise de décision	1148
d'identifier les premiers gènes suppresseurs de tumeur	1107	Plusieurs organismes modèles ont été capitaux	1148
Des mécanismes génétiques et épigénétiques peuvent inactiver	4400	pour la compréhension du développement Les gènes impliqués dans la communication intercellulaire	1140
les gènes suppresseurs de tumeurs Le séquençage systématique des génomes de cellules	1108	et le contrôle transcriptionnel sont particulièrement importants	
cancéreuses a transformé notre compréhension de la maladie	1109	pour le développement des animaux	1149
De nombreux cancers ont un génome extraordinairement perturbé	1111	L'ADN régulateur semble largement responsable des différences	
Beaucoup de mutations des cellules tumorales sont de simples passagers	1111	entre les espèces animales	1149
À peu près un pour cent des gènes du génome humain		Un petit nombre de voies de signalisation intercellulaires conservées	
sont critiques pour le cancer	1112	coordonnent l'organisation spatiale	1150
Les perturbations d'une poignée de processus clés	4440	Grâce au contrôle combinatoire et à la mémoire cellulaire,	
sont communes à de nombreux cancers Des mutations dans la voie PI3K/Akt/mTOR poussent	1113	des signaux simples peuvent générer des schémas	1150
les cellules cancéreuses à la croissance	1114	d'organisation complexes Les morphogènes sont des signaux d'induction (inducteurs)	1150
Des mutations dans la voie p53 permettent aux cellules	1117	à longue portée qui exercent des effets graduels	1151
cancéreuses de survivre et de proliférer		L'inhibition latérale peut générer des schémas de différents types cellulaires	1151
malgré un stress cellulaire ou des lésions de leur ADN	1115	L'activation à courte portée et l'inhibition à longue portée	
L'instabilité génomique prend des formes différentes		peut générer des schémas cellulaires complexes	1152
dans les différents cancers	1116	La division cellulaire asymétrique peut également générer de la diversité	1153
Les cancers des tissus spécialisés utilisent de nombreuses voies	1117	Les schémas initiaux s'établissent dans de petits champs	
différentes pour cibler et atteindre le tronc commun du cancer Des études utilisant des souris aident à définir les fonctions	1117	de cellules puis s'affinent par inductions séquentielles	
des gènes critiques pour le cancer	1117	tout au long de la croissance de l'embryon	1153
Les cancers deviennent de plus en plus hétérogènes à mesure qu'ils		La biologie du développement donne des aperçus	445
progressent	1118	sur l'entretien des tissus et certains processus pathologiques Résumé	1154 1154
Les changements des cellules tumorales qui conduisent			1104
aux métastases restent encore mystérieux	1119	LES MÉCANISMES DE LA FORMATION DES SCHÉMAS	4455
Une petite population de cellules souches cancéreuses pourrait mainten		D'ORGANISATION Différents animaux utilisent différents mécanismes	1155
actives de nombreuses tumeurs Le phénomène des cellules souches cancéreuses accroît la difficulté	1120	pour établir leurs axes primaires de polarisation	1155
des traitements du cancer	1121	Des études faites chez la drosophile ont révélé des mécanismes	1100
Les cancers colorectaux évoluent lentement en passant	1121	de contrôle génétique sous-jacents au développement	1157
par une succession de modifications visibles	1122	Des gènes de polarité de l'œuf codent des macromolécules	
Un petit nombre de lésions génétiques clés sont communes		localisées dans l'œuf qui organisent les axes de l'embryon	
à une grande partie des cancers colorectaux	1123	précoce de drosophile	1157
Certains cancers colorectaux présentent des anomalies	1101	Trois groupes de gènes contrôlent la segmentation	
de la réparation des mésappariements de l'ADN	1124	de la drosophile le long de l'axe A-P	1159
Il est souvent possible de corréler les étapes de la progression tumorale à des mutations spécifiques	1125	Une hiérarchie d'interactions de gènes régulateurs subdivise	4.50
Résumé	1126	l'embryon de la drosophile	1159
PRÉVENTION ET TRAITEMENT DU CANCER : PRÉSENT ET FUTUR	1127	Les gènes de polarité de l'œuf gap et pair-rule créent une organisation transitoire qui est gardée en mémoire par les gènes de polarité	
L'épidémiologie révèle que de nombreux cas de cancer sont évitables	1127	des segments et les gènes Hox	1160


SOMMAIRE DÉTAILLÉ **XXXI**

Les gènes Hox établissent de manière permanente le schéma		Les neurones qui émettent ensemble se connectent ensemble	121
d'organisation de l'axe A-P	1162 1163	Résumé Références	121: 121:
Les protéines Hox donnent à chaque segment son individualité Les gènes Hox sont exprimés séquentiellement selon leur ordre	1103		1214
sur l'ADN dans le complexe <i>Hox</i>	1163	Chapitre 22 Les cellules souches	
Le groupe des protéines Trithorax et Polycomb permet		et le renouvellement des tissus	1217
aux complexes Hox de conserver une mémoire permanente des informations positionnelles	1164	LES CELLULES SOUCHES ET LE RENOUVELLEMENT	
Les gènes de signalisation D-V créent un gradient du régulateur	1101	DES TISSUS ÉPITHÉLIAUX	121
transcriptionnel Dorsal	1164	Le revêtement interne de l'intestin grêle est sans cesse	121
Une hiérarchie d'interactions d'induction subdivise l'embryon des vertébrés Une compétition entre des protéines signal sécrétées met	1166	renouvelé grâce à la prolifération cellulaire des cryptes Les cellules souches de l'intestin grêle se situent à la base	1210
en place les schémas d'organisation de l'embryon de vertébré	1168	de chaque crypte ou tout près	121
L'axe dorso-ventral de l'insecte correspond à l'axe ventro-dorsal		Les deux filles d'une cellule souche font face à un choix	121
des vertébrés Les gènes <i>Hox</i> contrôlent l'axe A-P des vertébrés	1169 1169	La signalisation Wnt entretient le compartiment des cellules souches intestinales	122
Certains régulateurs transcriptionnels peuvent activer un programme	1100	Les cellules souches de la base des cryptes sont multipotentes,	
qui définit un type cellulaire ou créent un organe entier	1170	donnant naissance à la gamme complète des types cellulaires	100
L'inhibition latérale affine les schémas d'espacement cellulaire médiés par Notch	1171	différenciés intestinaux Les deux cellules filles d'une cellule souche ne deviennent	122
Les divisions cellulaires asymétriques rendent les cellules sœurs différentes	1173	pas obligatoirement différentes	122
Des différences dans l'ADN de régulation expliquent les différences		Les cellules de Paneth créent une niche pour les cellules souches	122
morphologiques Résumé	1174 1175	Une seule cellule exprimant <i>Lgr5</i> en culture peut générer un système organisé complet de cryptes et de villosités	122
LE CALENDRIER DU DÉVELOPPEMENT	1176	La signalisation éphrine-Eph organise la ségrégation des différents	
Les durées de vie moléculaires jouent un rôle critique	1170	types cellulaires de l'intestin	122
dans le calendrier du développement	1176	La signalisation par Notch contrôle la diversification des cellules de l'intestin et contribue à maintenir l'état de cellule souche	122
Un oscillateur d'expression de gènes agit comme une horloge pour contrôler la segmentation des vertébrés	1177	Le système des cellules souches épidermiques maintient	122
Des programmes de développement intracellulaires peuvent participer	11//	une barrière imperméable à l'eau auto-renouvelable	122
au réglage de la cinétique de développement d'une cellule	1179	Un renouvellement de tissus qui ne dépend pas des cellules souches : les cellules sécrétrices d'insuline du pancréas	
Les cellules comptent rarement leurs divisions cellulaires pour établir la chronologie de leur développement	1180	et les hépatocytes du foie	122
Les microARN régulent souvent les transitions du développement	1180	Certains tissus n'ont pas de cellules souches	400
Des signaux hormonaux coordonnent le calendrier des transitions		et ne sont pas renouvelables Résumé	122 122
de développement Des facteurs de l'environnement déterminent le moment de la floraison	1182 1182	LES FIBROBLASTES ET LEURS TRANSFORMATIONS :	122
Résumé	1184	LA FAMILLE DES CELLULES DU TISSU CONJONCTIF	122
LA MORPHOGENÈSE	1184	Les fibroblastes modifient leurs caractères en réponse	400
La migration cellulaire est guidée par des repères présents		à des signaux chimiques et physiques Les ostéoblastes sécrètent la matrice osseuse	122
dans l'environnement des cellules La répartition des cellules migrantes dépend de facteurs de survie	1185 1186	L'os est continuellement remodelé par les cellules qu'il contient	123
Des schémas d'organisation évolutifs des molécules d'adhésion		Les ostéoclastes sont contrôlés par des signaux provenant des ostéoblastes	123
cellulaire forcent les cellules à se réorganiser	1187	Résumé	123
Des interactions répulsives aident à maintenir les limites des tissus Des groupes de cellules similaires peuvent effectuer	1188	GENÈSE ET RÉGÉNÉRATION DU MUSCLE SQUELETTIQUE La fusion des myoblastes donne naissance aux nouvelles cellules	123
des réarrangements collectifs spectaculaires	1188	du muscle squelettique	123
La polarité cellulaire planaire aide à orienter la structure cellulaire	4400	Certains myoblastes persistent en tant que cellules souches	100
et le mouvement des épithéliums en développement Des interactions entre un épithélium et le mésenchyme	1189	quiescentes chez l'adulte Résumé	123 123
peuvent engendrer des structures tubulaires ramifiées	1190	LES VAISSEAUX SANGUINS ET LYMPHATIQUES,	120
Un épithélium peut se courber au cours du développement	4.400	ET LES CELLULES ENDOTHÉLIALES	123
pour former un tube ou une vésicule Résumé	1192 1193	Les cellules endothéliales tapissent tous les vaisseaux sanguins	400
LA CROISSANCE	1193	et lymphatiques Les cellules endothéliales des extrémités sont les pionnières de l'angiogenèse	123
La prolifération, la mort et la taille des cellules déterminent la taille		Les tissus ayant besoin d'un apport sanguin libèrent du VEGF	123
de l'organisme	1194	Des signaux en provenance des cellules endothéliales contrôlent le recrutement de péricytes et de cellules musculaires lisses	
Les animaux et leurs organes peuvent évaluer et réguler la masse totale de leurs cellules	1194	pour former la paroi des vaisseaux	123
Des signaux extracellulaires stimulent ou inhibent la croissance	1196	Résumé	123
Résumé	1197	UN SYSTÈME HIÉRARCHIQUE DE CELLULES SOUCHES :	
LE DÉVELOPPEMENT NEURAL	1198	LA FORMATION DES CELLULES SANGUINES	123
Des caractères différents sont assignés aux neurones selon le moment et le lieu de leur naissance	1199	Les globules rouges sont tous pareils; les globules blancs peuvent être regroupés en trois grandes catégories	123
Le cône de croissance pilote les axones le long de routes		La production de chaque type de cellule sanguine dans la moelle	
spécifiques vers leurs cibles	1201	osseuse est contrôlée individuellement	124
Toute une variété de repères extracellulaires guident les axones jusqu'à leurs cibles	1202	La moelle osseuse contient les cellules souches hématopoïétiques multipotentes, capables de donner naissance à toutes les classes	
La formation de cartes neurales ordonnées dépend		de cellules sanguines	124
des spécificités neuronales	1204	L'engagement irréversible est un processus à plusieurs étapes	124
Les ramifications des dendrites et des branches axonales d'un même neurone s'évitent l'une l'autre	1206	Les divisions des cellules précurseur engagées irréversiblement amplifient le nombre de cellules sanguines spécialisées	124
Les tissus cibles libèrent des facteurs neurotrophiques		Les cellules souches sont dépendantes de signaux de contact	
qui contrôlent la croissance des cellules nerveuses et leur survie	1208	venant des cellules stromales	124
La formation des synapses dépend de communications bidirectionnelles entre les neurones et leurs cellules cibles	1209	Les facteurs qui régulent l'hématopoïèse peuvent être analysés en culture L'érythropoïèse dépend de l'hormone érythropoïétine	124 124
L'élagage synaptique dépend de l'activité électrique	.230	De multiples CSF influent sur la production des neutrophiles	
et de la signalisation synaptique	1211	et des macrophages	124

Le comportement d'une cellule hématopoïétique dépend en partie du hasard	1245	Une réplication du génome peu fidèle domine l'évolution virale	1291
La régulation de la survie cellulaire est aussi importante		Les pathogènes résistants aux médicaments posent un problème croissant	
que celle de la prolifération cellulaire	1246	Résumé	1294
Résumé	1247	Références	1295
RÉGÉNÉRATION ET RÉPARATION	1247	Chapitre 24 Les systèmes immunitaires inné	
Les vers planaires contiennent des cellules souches qui peuvent	1017		1297
régénérer un nouveau corps entier	1247	et adaptatif	1297
Certains vertébrés peuvent régénérer des organes entiers	1248	LE SYSTÈME IMMUNITAIRE INNÉ	1298
Les cellules souches peuvent être artificiellement utilisées pour remplacer des cellules malades ou perdues : les thérapies		Les surfaces épithéliales servent de barrières contre les infections	1298
cellulaires pour le sang et l'épiderme	1249	Les récepteurs de reconnaissance des patterns (PRR)	
Les cellules souches neurales peuvent être manipulées en culture	1240	reconnaissent les propriétés conservées des pathogènes	1298
et utilisées pour repeupler le système nerveux central	1250	Il y a des classes multiples de PRR	1299
Résumé	1251	Les PRR activés déclenchent une réaction inflammatoire sur le site	
LA REPROGRAMMATION CELLULAIRE ET LES CELLULES		de l'infection	1300
SOUCHES PLURIPOTENTES	1251	Les cellules phagocytaires recherchent, engloutissent et détruisent	
Les noyaux peuvent être reprogrammés par transplantation	1231	les pathogènes	1301
dans un cytoplasme étranger	1252	L'activation du complément marque les pathogènes en vue	
La reprogrammation d'un noyau transplanté requiert	.202	de leur phagocytose ou de leur lyse	1302
des changements épigénétiques drastiques	1252	Les cellules infectées par un virus prennent des mesures drastiques	4000
Les cellules souches embryonnaires (ES) peuvent générer		pour éviter sa réplication	1303
n'importe quelle partie du corps	1253	Les cellules tueuses naturelles (cellules NK) induisent le suicide	100/
Un ensemble de base de régulateurs transcriptionnels définit		des cellules infectées par un virus	1304
et maintient l'état de cellule ES	1254	Les cellules dendritiques établissent le lien entre les systèmes immunitaires inné et adaptatif	1305
Des fibroblastes peuvent être reprogrammés pour créer		Résumé	1305
des cellules souches pluripotentes induites (cellules iPS)	1254		
La reprogrammation met en jeu un dérèglement massif	4055	VUE D'ENSEMBLE DU SYSTÈME IMMUNITAIRE ADAPTATIF	1307
du système de contrôle des gènes	1255	Les lymphocytes B se développent dans la moelle osseuse,	4000
Une manipulation expérimentale des facteurs qui modifient la chromatine peut accroître l'efficacité de la reprogrammation	1256	les lymphocytes T dans le thymus	1308
Les cellules ES et iPS peuvent être induites à se différencier en types	1230	La mémoire immunologique dépend à la fois de l'expansion	1000
cellulaires adultes spécifiques, et même générer des organes entiers	1256	clonale et de la différenciation des lymphocytes	1309
Les cellules d'un type spécialisé peuvent être forcées	1200	Les lymphocytes recirculent continuellement entre les organes lymphoïdes périphériques	1311
à se transdifférencier directement en un autre type	1258	L'auto-tolérance immunologique garantit que les lymphocytes B et T	1011
Les cellules ES et iPS peuvent être aussi utiles à la découverte		n'attaquent pas les cellules et les molécules normales de l'hôte	1313
de médicaments et à l'analyse des maladies	1258	Résumé	1315
Résumé	1260		
Références	1261	LES LYMPHOCYTES B ET LES IMMUNOGLOBULINES	1315
Observition 00 Learnesthan Norway at Learnest Land	1000	Les lymphocytes B produisent des immunoglobulines (Ig)	
Chapitre 23 Les pathogènes et les infections	1263	à la fois sous forme de récepteurs de la surface cellulaire et d'anticorps sécrétés	1315
INTRODUCTION AUX MICROBES PATHOGÈNES		Les mammifères fabriquent cinq classes d'Ig	1316
ET AU MICROBIOTE HUMAIN	1263	Les chaînes légères et lourdes des lg sont composées de régions	1010
Le microbiote humain est un système écologique complexe		constantes et de régions variables	1318
qui est important pour notre développement et notre santé	1264	Les gènes des lg sont assemblés à partir de segments géniques	1010
Les pathogènes interagissent avec leurs hôtes de différentes façons	1264	séparés pendant le développement des lymphocytes B	1319
Les pathogènes peuvent contribuer au cancer, aux maladies		L'hypermutation somatique entraînée par les antigènes règle	
cardiovasculaires et à d'autres maladies chroniques	1265	finement les réponses par anticorps	1321
Les pathogènes peuvent être des virus, des bactéries ou des eucaryotes	1266	Les lymphocytes B peuvent changer la classe d'Ig qu'ils produisent	1322
Les bactéries sont diverses et occupent une variété remarquable		Résumé	1323
de niches écologiques	1267	LES LYMPHOCYTES T ET LES PROTÉINES DU CMH	1324
Les bactéries pathogènes sont porteuses de gènes de virulence spécifiques	1268	Les récepteurs des lymphocytes T (RCT) sont des hétérodimères	102
Les gènes de virulence bactériens codent des protéines effectrices		de type anticorps	1325
et sécrètent les systèmes qui fournissent les protéines effectrices	1269	Les cellules dendritiques activées activent les lymphocytes T naïfs	1326
aux cellules hôtes Les champignons et les protozoaires parasites ont des cycles	1209	Les lymphocytes T reconnaissent les peptides étrangers fixés	
de vie complexes impliquant des formes multiples	1271	aux protéines du CMH	1326
Tous les aspects de la propagation des virus dépendent	1211	Les protéines du CMH sont les plus polymorphes des protéines	
de la machinerie de la cellule hôte	1273	humaines connues	1330
Résumé	1275	Les corécepteurs CD4 et CD8 des lymphocytes T se fixent	
BIOLOGIE CELLULAIRE DE L'INFECTION	1276	sur les parties invariantes des protéines du CMH	1331
Les pathogènes traversent des barrières épithéliales pour infecter l'hôte	1276	Les thymocytes en développement subissent une sélection	
Les pathogènes qui colonisent un épithélium doivent surmonter	1210	négative et une sélection positive	1332
les mécanismes de protection de celui-ci	1276	Les lymphocytes T cytotoxiques conduisent les cellules	
Les pathogènes extracellulaires perturbent les cellules hôtes sans y pénétrer	1277	cibles infectées au suicide	1333
Les pathogènes intracellulaires ont des mécanismes		Les lymphocytes T auxiliaires effecteurs facilitent l'activation	
qui leur permettent d'entrer et de sortir des cellules hôtes	1278	des autres cellules des systèmes immunitaires inné et adaptatif	1335
Les virus se fixent sur des récepteurs de surface de la cellule hôte	1279	Les lymphocytes T auxiliaires naïfs peuvent se différencier	4005
Les virus entrent dans les cellules hôtes par fusion avec la membrane,		en différents types de lymphocytes T effecteurs	1335
formation d'un pore ou rupture membranaire	1280	Aussi bien les lymphocytes B que les lymphocytes T ont besoin	1000
Les bactéries entrent dans leur hôte en se faisant phagocyter par ses cellules	1281	de signaux extracellulaires multiples pour être activés	1336
Les parasites eucaryotes intracellulaires envahissent activement	1000	Beaucoup de protéines de la surface cellulaire appartiennent à la superfamille des lg	1338
les cellules hôtes	1282	a la superfamille des ig Résumé	1339
Certains pathogènes intracellulaires s'échappent du phagosome	1284	Références	1340
vers le cytosol De nombreux pathogènes modifient le trafic membranaire	1204	. 10.0.0.1000	1040
de la cellule hôte pour y survivre et se répliquer	1284	Glossaire	G : 1
Les virus et les bactéries utilisent le cytosquelette de la cellule	0 !	Giocodiio	J . I
hôte pour leurs déplacements intracellulaires	1286	Index	1:1
Les virus peuvent prendre le contrôle du métabolisme de la cellule hôte	1288		
Les nathogènes perivent évoluer rapidement par variation antigénique	1280	Tableaux	T • 1

Biologie moléculaire de LA CELLULE

Sixième édition

DAVID MORGAN

MARTIN RAFF

KEITH ROBERTS

PETER WALTER

