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Modern Computational Finance

Computational concerns, the ability to calculate values and risks of deriva-
tives portfolios practically and in reasonable time, have always been a

major part of quantitative finance. With the rise of bank-wide regulatory
simulations like CVA and capital requirements, it became a matter of sur-
vival. Modern computational finance makes the difference between calculat-
ing CVA risk overnight in large data centers and praying that they complete
by morning, or in real-time, within minutes on a workstation.

Computational finance became a key skill, now expected from all quan-
titative analysts, developers, risk professionals, and anyone involved with
financial derivatives. It is increasingly taught in masters programs in finance,
such as the Copenhagen University’s MSc Mathematics - Economics, where
this publication is the curriculum in numerical finance.

Danske Bank’s quantitative research built its front office and regulatory
systems combining technologies such as model hierarchies, scripting of trans-
actions, parallel Monte-Carlo, a special application of regression proxies,
and Automatic Adjoint Differentiation (AAD).

In 2015, Danske Bank demonstrated the computation of a sizeable CVA
on a laptop in seconds, and its full market risk in minutes, without loss of
accuracy, and won the In-House System of the Year Risk award.

xi
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xii MODERN COMPUTATIONAL FINANCE

Wiley’s Computational Finance series, written by some of the very
people who wrote Danske Bank’s systems, offers a unique insight into
the modern implementation of financial models. The volumes combine
financial modeling, mathematics, and programming to resolve real-life
financial problems and produce effective derivatives software.

The scientific, financial, and programming notions are developed in a
pedagogical, self-contained manner. The publications are inseparable from
the professional source code in C++ that comes with them. The books build
the libraries step by step and the code demonstrates the practical application
of the concepts discussed in the publications.

This is an essential reading for developers and analysts, risk managers,
and all professionals involved with financial derivatives, as well as students
and teachers in Masters and PhD programs in finance.

ALGORITHMIC ADJOINT DIFFERENTIATION

This volume is written by Antoine Savine, who co-wrote Danske Bank’s par-
allel simulation and AAD engines, and teaches volatility and computational
finance in Copenhagen University’s MSc Mathematics - Economics.

Arguably the strongest addition to numerical finance of the past decade,
Algorithmic Adjoint Differentiation (AAD) is the technology implemented in
modern financial software to produce thousands of accurate risk sensitivities
within seconds on light hardware. AAD is one of the greatest algorithms of
the 20th century. It is also notoriously hard to learn.

This book offers a one-stop learning and reference resource for AAD,
its practical implementation in C++, and its application in finance. AAD
is explained step by step across chapters that gently lead readers from the
theoretical foundations to the most delicate areas of an efficient implemen-
tation, such as memory management, parallel implementation, and acceler-
ation with expression templates.

The publication comes with a self-contained, complete, general-purpose
implementation of AAD in standard modern C++. The AAD library builds
on the latest advances in AAD research to achieve remarkable speed. The
code is incrementally built throughout the publication, where all the imple-
mentation details are explained.
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Modern Computational Finance xiii

The publication also covers the application of AAD to financial deriva-
tives and the design of generic, parallel simulation libraries. Readers with
working knowledge of derivatives and C++ will benefit most, although the
book does cover modern and parallel C++.

The book comes with a professional parallel simulation library in
C++, connected to AAD. Some of the most delicate applications of AAD to
finance, such as the differentiation through calibration, are also explained
in words, mathematics, and code.
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Preface by Leif Andersen

I t is now 2018, and the global quant community is realizing that size does
matter: big data, big models, big computing grids, big computations – and

a big regulatory rulebook to go along with it all. Not to speak of the big
headaches that all this has induced across Wall Street.

The era of “big finance” has been creeping up on the banking industry
gradually since the late 1990s, and got a boost when the Financial Crisis
of 2007–2009 exposed a variety of deep complexities in the workings of
financial markets, especially in periods of stress. Not only did this lead to
more complicated models and richer market data with an explosion of basis
adjustments, it also emphasized the need for more sophisticated governance
as well as quoting and risk managements practices. One poster child for these
developments is the new market practice of incorporating portfolio-level
funding, margin, liquidity, capital, and credit effects (collectively known as
“XVAs”) into the prices of even the simplest of options, turning the pre-
viously trivial exercise of pricing, say, a plain-vanilla swap into a cross-
asset high-dimensional modeling problem that requires PhD-level expertise
in computing and model building. Regulators have contributed to the trend
as well, with credit capital calculation requirements under Basel 3 rules that
are at the same level of complexity as XVA calculations, and with the trans-
parency requirements of MiFID II requiring banks to collect and disclose
vast amounts of trade data.

To get a quick sense of the computational effort involved in a basic XVA
calculation, consider that such a computation typically involves path-wise
Monte Carlo simulation of option trade prices through time, from today’s
date to the final maturity of the trades. Let us say that 10,000 simulations are
used, running on a monthly grid for 10 years. As a good-sized bank proba-
bly has in the neighborhood of 1,000,000 options on its books, calculating
a single XVA adjustment on the bank’s derivatives holding will involve in
the order of 103 ⋅ 10 ⋅ 12 ⋅ 106 ≈ 1011 option re-pricings, on top of the often
highly significant effort of executing the Monte Carlo simulation of mar-
ket data required for pricing in the first place. Making matters significantly
worse is then the fact that the traders and risk managers looking after the
XVA positions will always require that sensitivities (i.e., partial derivatives)
with respect to key risk factors in the market data are returned along with the
XVA number itself. For complex portfolios, the number of sensitivities that

xv
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xvi PREFACE BY LEIF ANDERSEN

one needs to compute can easily be in the order of 103; if these are computed
naively (e.g., by finite difference approximations), the number of option re-
pricings needed will then grow to a truly unmanageable order of 1014.

There are many interesting ways of chipping away at the practical prob-
lems of XVA calculations, but let us focus on the burdens associated with the
computation of sensitivities, for several reasons. First, sensitivities constitute
a perennial problem in the quant world: whenever one computes some quan-
tity, odds are that somebody in a trading or governance function will want
to see sensitivities of said quantity to the inputs that are used in the com-
putation, for limit monitoring, hedging, allocation, sanity checking, and so
forth. Second, having input sensitivities available can be very powerful in an
optimization setting. One rapidly growing area of “big finance” where opti-
mization problems are especially pervasive is in the machine learning space,
an area that is subject to enormous interest at the moment. And third, it just
happens that there exists a very powerful technique to reduce the computa-
tional burden of sensitivity calculations to almost magically low levels.

To expand on the last point above, let us note the following quote by
Phil Wolfe ([1]):

There is a common misconception that calculating a function of n
variables and its gradient is about n + 1 times as expensive as just
calculating the function. This will only be true if the gradient is eval-
uated by differencing function values or by some other emergency
procedure. If care is taken in handling quantities, which are com-
mon to the function and its derivatives, the ratio is usually 1.5, not
n + 1, whether the quantities are defined explicitly or implicitly, for
example, the solutions of differential equations...

The “care” in “handling quantities” that Wolfe somewhat cryptically
refers to is now known as Algorithmic Adjoint Differentiation (AAD), also
known as reverse automatic differentiation or, in machine learning circles,
as backward propagation (or simply backprop). Translated into our XVA
example, the promise of the “cheap gradient” principle underpinning AAD is
that computation of all sensitivities to the XVA metric – no matter how many
thousands of sensitivities this might be – may be computed at a cost that is
order (1) times the cost of computing the basic XVA metric itself. It can be
shown (see [2]) that the constant in the (1) term is bounded from above
by 5. To paraphrase [3], this remarkable result can be seen as somewhat of
a “holy grail” of sensitivity computation.

The history of AAD is an interesting one, marked by numerous discover-
ies and re-discoveries of the same basic idea which, despite its profoundness,1

1Nick Trefethen [4] classifies AAD as one of the 30 greatest numerical algorithms of
the 20th century.
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has had a tendency of sliding into oblivion; see [3] for an entertaining and
illuminating account. The first descriptions of AAD date back to the 1960s,
if not earlier, but did not take firm hold in the computer science community
before the late 1980s. In Finance, the first published account took another
20 years to arrive, in the form of the award-winning paper [5].

As one starts reading the literature, it soon becomes clear why AAD
originally had a hard time getting a foothold: the technique is hard to com-
prehend; is often hidden behind thick computer science lingo or is buried
inside applications that have little general interest.2 Besides, even if one man-
ages to understand the ideas behind the method, there are often formidable
challenges in actually implementing AAD in code, especially with manage-
ment of memory or retro-fitting AAD into an existing code library.

The book you hold in your hands addresses the above challenges of
AAD head-on. Written by a long-time derivatives quant, Antoine Savine, the
exposition is done at a level, and in an applications setting, that is ideal for a
Finance audience. The conceptual, mathematical, and computational ideas
behind AAD are patiently developed in a step-by-step manner, where the
many brain-twisting aspects of AAD are demystified. For real-life application
projects, the book is loaded with modern C++ code and battle-tested advice
on how to get AAD to run for real.

Select topics include: parallel C++ programming, operator overloading,
tapes, check-pointing, model calibration, and much more. For both new-
comers and those quaint exotics quants among us who need an upgrade to
our coding skills and to our understanding of AAD, my advice is this: start
reading!

2Some of the early expositions of AAD took place in the frameworks of chemical
engineering, electronic circuits, weather forecasting, and compiler optimization.


