

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page i�

� �

�

Modern
Computational

Finance

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page ii�

� �

�

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page iii�

� �

�

Modern
Computational

Finance
AAD and Parallel Simulations

with professional implementation in C++

ANTOINE SAVINE

Preface by Leif Andersen

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page iv�

� �

�

Copyright © 2019 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978) 646–8600, or on the Web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748–6011, fax (201) 748–6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762–2974, outside
the United States at (317) 572–3993, or fax (317) 572–4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or
in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Names: Savine, Antoine, 1970- author.
Title: Modern computational finance : AAD and parallel simulations / Antoine

Savine.
Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2019] | Includes

bibliographical references and index. |
Identifiers: LCCN 2018041510 (print) | LCCN 2018042197 (ebook) | ISBN

9781119539544 (Adobe PDF) | ISBN 9781119539520 (ePub) | ISBN 9781119539452
(hardcover)

Subjects: LCSH: Finance—Mathematical models. | Finance—Computer simulation.
| Automatic differentiation.

Classification: LCC HG106 (ebook) | LCC HG106 .S28 2019 (print) | DDC
332.01/5195—dc23

LC record available at https://lccn.loc.gov/2018041510

Cover Design: Wiley
Cover Image: ©kentarcajuan/E+/Getty Images

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
https://lccn.loc.gov/2018041510

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page v�

� �

�

To my wife Audrey, who taught me to love.

To my children, Simon, Sarah, and Anna, who taught me to care.

To Bruno Dupire, who taught me to think.

To Jesper Andreasen, who believed in me when nobody else would.

And to my parents, Svetlana and Andre Savine,
who I wish were with us to read my first book.

—Antoine Savine

Trim Size: 6in x 9in Savine539452 ffirs.tex V1 - 09/26/2018 7:26pm Page vi�

� �

�

Trim Size: 6in x 9in Savine539452 ftoc.tex V1 - 09/20/2018 8:21am Page vii�

� �

�

Contents

Modern Computational Finance xi

Preface by Leif Andersen xv

Acknowledgments xix

Introduction xxi

About the Companion C++ Code xxv

PART I
Modern Parallel Programming 1

Introduction 3

CHAPTER 1
Effective C++ 17

CHAPTER 2
Modern C++ 25

2.1 Lambda expressions 25
2.2 Functional programming in C++ 28
2.3 Move semantics 34
2.4 Smart pointers 41

CHAPTER 3
Parallel C++ 47

3.1 Multi-threaded Hello World 49
3.2 Thread management 50
3.3 Data sharing 55
3.4 Thread local storage 56

vii

Trim Size: 6in x 9in Savine539452 ftoc.tex V1 - 09/20/2018 8:21am Page viii�

� �

�

viii CONTENTS

3.5 False sharing 57
3.6 Race conditions and data races 62
3.7 Locks 64
3.8 Spinlocks 66
3.9 Deadlocks 67
3.10 RAII locks 68
3.11 Lock-free concurrent design 70
3.12 Introduction to concurrent data structures 72
3.13 Condition variables 74
3.14 Advanced synchronization 80
3.15 Lazy initialization 83
3.16 Atomic types 86
3.17 Task management 89
3.18 Thread pools 96
3.19 Using the thread pool 108
3.20 Debugging and optimizing parallel programs 113

PART II
Parallel Simulation 123

Introduction 125

CHAPTER 4
Asset Pricing 127

4.1 Financial products 127
4.2 The Arbitrage Pricing Theory 140
4.3 Financial models 151

CHAPTER 5
Monte-Carlo 185

5.1 The Monte-Carlo algorithm 185
5.2 Simulation of dynamic models 192
5.3 Random numbers 200
5.4 Better random numbers 202

CHAPTER 6
Serial Implementation 213

6.1 The template simulation algorithm 213
6.2 Random number generators 223
6.3 Concrete products 230
6.4 Concrete models 245

Trim Size: 6in x 9in Savine539452 ftoc.tex V1 - 09/20/2018 8:21am Page ix�

� �

�

Contents ix

6.5 User interface 263
6.6 Results 268

CHAPTER 7
Parallel Implementation 271

7.1 Parallel code and skip ahead 271
7.2 Skip ahead with mrg32k3a 276
7.3 Skip ahead with Sobol 282
7.4 Results 283

PART III
Constant Time Differentiation 285

Introduction 287

CHAPTER 8
Manual Adjoint Differentiation 295

8.1 Introduction to Adjoint Differentiation 295
8.2 Adjoint Differentiation by hand 308
8.3 Applications in machine learning and finance 315

CHAPTER 9
Algorithmic Adjoint Differentiation 321

9.1 Calculation graphs 322
9.2 Building and applying DAGs 328
9.3 Adjoint mathematics 340
9.4 Adjoint accumulation and DAG traversal 344
9.5 Working with tapes 349

CHAPTER 10
Effective AAD and Memory Management 357

10.1 The Node class 359
10.2 Memory management and the Tape class 362
10.3 The Number class 379
10.4 Basic instrumentation 398

CHAPTER 11
Discussion and Limitations 401

11.1 Inputs and outputs 401
11.2 Higher-order derivatives 402

Trim Size: 6in x 9in Savine539452 ftoc.tex V1 - 09/20/2018 8:21am Page x�

� �

�

x CONTENTS

11.3 Control flow 402
11.4 Memory 403

CHAPTER 12
Differentiation of the Simulation Library 407

12.1 Active code 407
12.2 Serial code 409
12.3 User interface 417
12.4 Serial results 424
12.5 Parallel code 426
12.6 Parallel results 433

CHAPTER 13
Check-Pointing and Calibration 439

13.1 Check-pointing 439
13.2 Explicit calibration 448
13.3 Implicit calibration 475

CHAPTER 14
Multiple Differentiation in Almost Constant Time 483

14.1 Multidimensional differentiation 483
14.2 Traditional Multidimensional AAD 484
14.3 Multidimensional adjoints 485
14.4 AAD library support 487
14.5 Instrumentation of simulation algorithms 494
14.6 Results 499

CHAPTER 15
Acceleration with Expression Templates 503

15.1 Expression nodes 504
15.2 Expression templates 507
15.3 Expression templated AAD code 524

Debugging AAD Instrumentation 541

Conclusion 547

References 549

Index 555

Trim Size: 6in x 9in Savine539452 fbetw.tex V1 - 09/20/2018 8:21am Page xi�

� �

�

Modern Computational Finance

Computational concerns, the ability to calculate values and risks of deriva-
tives portfolios practically and in reasonable time, have always been a

major part of quantitative finance. With the rise of bank-wide regulatory
simulations like CVA and capital requirements, it became a matter of sur-
vival. Modern computational finance makes the difference between calculat-
ing CVA risk overnight in large data centers and praying that they complete
by morning, or in real-time, within minutes on a workstation.

Computational finance became a key skill, now expected from all quan-
titative analysts, developers, risk professionals, and anyone involved with
financial derivatives. It is increasingly taught in masters programs in finance,
such as the Copenhagen University’s MSc Mathematics - Economics, where
this publication is the curriculum in numerical finance.

Danske Bank’s quantitative research built its front office and regulatory
systems combining technologies such as model hierarchies, scripting of trans-
actions, parallel Monte-Carlo, a special application of regression proxies,
and Automatic Adjoint Differentiation (AAD).

In 2015, Danske Bank demonstrated the computation of a sizeable CVA
on a laptop in seconds, and its full market risk in minutes, without loss of
accuracy, and won the In-House System of the Year Risk award.

xi

Trim Size: 6in x 9in Savine539452 fbetw.tex V1 - 09/20/2018 8:21am Page xii�

� �

�

xii MODERN COMPUTATIONAL FINANCE

Wiley’s Computational Finance series, written by some of the very
people who wrote Danske Bank’s systems, offers a unique insight into
the modern implementation of financial models. The volumes combine
financial modeling, mathematics, and programming to resolve real-life
financial problems and produce effective derivatives software.

The scientific, financial, and programming notions are developed in a
pedagogical, self-contained manner. The publications are inseparable from
the professional source code in C++ that comes with them. The books build
the libraries step by step and the code demonstrates the practical application
of the concepts discussed in the publications.

This is an essential reading for developers and analysts, risk managers,
and all professionals involved with financial derivatives, as well as students
and teachers in Masters and PhD programs in finance.

ALGORITHMIC ADJOINT DIFFERENTIATION

This volume is written by Antoine Savine, who co-wrote Danske Bank’s par-
allel simulation and AAD engines, and teaches volatility and computational
finance in Copenhagen University’s MSc Mathematics - Economics.

Arguably the strongest addition to numerical finance of the past decade,
Algorithmic Adjoint Differentiation (AAD) is the technology implemented in
modern financial software to produce thousands of accurate risk sensitivities
within seconds on light hardware. AAD is one of the greatest algorithms of
the 20th century. It is also notoriously hard to learn.

This book offers a one-stop learning and reference resource for AAD,
its practical implementation in C++, and its application in finance. AAD
is explained step by step across chapters that gently lead readers from the
theoretical foundations to the most delicate areas of an efficient implemen-
tation, such as memory management, parallel implementation, and acceler-
ation with expression templates.

The publication comes with a self-contained, complete, general-purpose
implementation of AAD in standard modern C++. The AAD library builds
on the latest advances in AAD research to achieve remarkable speed. The
code is incrementally built throughout the publication, where all the imple-
mentation details are explained.

Trim Size: 6in x 9in Savine539452 fbetw.tex V1 - 09/20/2018 8:21am Page xiii�

� �

�

Modern Computational Finance xiii

The publication also covers the application of AAD to financial deriva-
tives and the design of generic, parallel simulation libraries. Readers with
working knowledge of derivatives and C++ will benefit most, although the
book does cover modern and parallel C++.

The book comes with a professional parallel simulation library in
C++, connected to AAD. Some of the most delicate applications of AAD to
finance, such as the differentiation through calibration, are also explained
in words, mathematics, and code.

Trim Size: 6in x 9in Savine539452 fbetw.tex V1 - 09/20/2018 8:21am Page xiv�

� �

�

Trim Size: 6in x 9in Savine539452 fpref.tex V1 - 09/20/2018 8:21am Page xv�

� �

�

Preface by Leif Andersen

I t is now 2018, and the global quant community is realizing that size does
matter: big data, big models, big computing grids, big computations – and

a big regulatory rulebook to go along with it all. Not to speak of the big
headaches that all this has induced across Wall Street.

The era of “big finance” has been creeping up on the banking industry
gradually since the late 1990s, and got a boost when the Financial Crisis
of 2007–2009 exposed a variety of deep complexities in the workings of
financial markets, especially in periods of stress. Not only did this lead to
more complicated models and richer market data with an explosion of basis
adjustments, it also emphasized the need for more sophisticated governance
as well as quoting and risk managements practices. One poster child for these
developments is the new market practice of incorporating portfolio-level
funding, margin, liquidity, capital, and credit effects (collectively known as
“XVAs”) into the prices of even the simplest of options, turning the pre-
viously trivial exercise of pricing, say, a plain-vanilla swap into a cross-
asset high-dimensional modeling problem that requires PhD-level expertise
in computing and model building. Regulators have contributed to the trend
as well, with credit capital calculation requirements under Basel 3 rules that
are at the same level of complexity as XVA calculations, and with the trans-
parency requirements of MiFID II requiring banks to collect and disclose
vast amounts of trade data.

To get a quick sense of the computational effort involved in a basic XVA
calculation, consider that such a computation typically involves path-wise
Monte Carlo simulation of option trade prices through time, from today’s
date to the final maturity of the trades. Let us say that 10,000 simulations are
used, running on a monthly grid for 10 years. As a good-sized bank proba-
bly has in the neighborhood of 1,000,000 options on its books, calculating
a single XVA adjustment on the bank’s derivatives holding will involve in
the order of 103 ⋅ 10 ⋅ 12 ⋅ 106 ≈ 1011 option re-pricings, on top of the often
highly significant effort of executing the Monte Carlo simulation of mar-
ket data required for pricing in the first place. Making matters significantly
worse is then the fact that the traders and risk managers looking after the
XVA positions will always require that sensitivities (i.e., partial derivatives)
with respect to key risk factors in the market data are returned along with the
XVA number itself. For complex portfolios, the number of sensitivities that

xv

Trim Size: 6in x 9in Savine539452 fpref.tex V1 - 09/20/2018 8:21am Page xvi�

� �

�

xvi PREFACE BY LEIF ANDERSEN

one needs to compute can easily be in the order of 103; if these are computed
naively (e.g., by finite difference approximations), the number of option re-
pricings needed will then grow to a truly unmanageable order of 1014.

There are many interesting ways of chipping away at the practical prob-
lems of XVA calculations, but let us focus on the burdens associated with the
computation of sensitivities, for several reasons. First, sensitivities constitute
a perennial problem in the quant world: whenever one computes some quan-
tity, odds are that somebody in a trading or governance function will want
to see sensitivities of said quantity to the inputs that are used in the com-
putation, for limit monitoring, hedging, allocation, sanity checking, and so
forth. Second, having input sensitivities available can be very powerful in an
optimization setting. One rapidly growing area of “big finance” where opti-
mization problems are especially pervasive is in the machine learning space,
an area that is subject to enormous interest at the moment. And third, it just
happens that there exists a very powerful technique to reduce the computa-
tional burden of sensitivity calculations to almost magically low levels.

To expand on the last point above, let us note the following quote by
Phil Wolfe ([1]):

There is a common misconception that calculating a function of n
variables and its gradient is about n + 1 times as expensive as just
calculating the function. This will only be true if the gradient is eval-
uated by differencing function values or by some other emergency
procedure. If care is taken in handling quantities, which are com-
mon to the function and its derivatives, the ratio is usually 1.5, not
n + 1, whether the quantities are defined explicitly or implicitly, for
example, the solutions of differential equations...

The “care” in “handling quantities” that Wolfe somewhat cryptically
refers to is now known as Algorithmic Adjoint Differentiation (AAD), also
known as reverse automatic differentiation or, in machine learning circles,
as backward propagation (or simply backprop). Translated into our XVA
example, the promise of the “cheap gradient” principle underpinning AAD is
that computation of all sensitivities to the XVA metric – no matter how many
thousands of sensitivities this might be – may be computed at a cost that is
order (1) times the cost of computing the basic XVA metric itself. It can be
shown (see [2]) that the constant in the (1) term is bounded from above
by 5. To paraphrase [3], this remarkable result can be seen as somewhat of
a “holy grail” of sensitivity computation.

The history of AAD is an interesting one, marked by numerous discover-
ies and re-discoveries of the same basic idea which, despite its profoundness,1

1Nick Trefethen [4] classifies AAD as one of the 30 greatest numerical algorithms of
the 20th century.

Trim Size: 6in x 9in Savine539452 fpref.tex V1 - 09/20/2018 8:21am Page xvii�

� �

�

Preface by Leif Andersen xvii

has had a tendency of sliding into oblivion; see [3] for an entertaining and
illuminating account. The first descriptions of AAD date back to the 1960s,
if not earlier, but did not take firm hold in the computer science community
before the late 1980s. In Finance, the first published account took another
20 years to arrive, in the form of the award-winning paper [5].

As one starts reading the literature, it soon becomes clear why AAD
originally had a hard time getting a foothold: the technique is hard to com-
prehend; is often hidden behind thick computer science lingo or is buried
inside applications that have little general interest.2 Besides, even if one man-
ages to understand the ideas behind the method, there are often formidable
challenges in actually implementing AAD in code, especially with manage-
ment of memory or retro-fitting AAD into an existing code library.

The book you hold in your hands addresses the above challenges of
AAD head-on. Written by a long-time derivatives quant, Antoine Savine, the
exposition is done at a level, and in an applications setting, that is ideal for a
Finance audience. The conceptual, mathematical, and computational ideas
behind AAD are patiently developed in a step-by-step manner, where the
many brain-twisting aspects of AAD are demystified. For real-life application
projects, the book is loaded with modern C++ code and battle-tested advice
on how to get AAD to run for real.

Select topics include: parallel C++ programming, operator overloading,
tapes, check-pointing, model calibration, and much more. For both new-
comers and those quaint exotics quants among us who need an upgrade to
our coding skills and to our understanding of AAD, my advice is this: start
reading!

2Some of the early expositions of AAD took place in the frameworks of chemical
engineering, electronic circuits, weather forecasting, and compiler optimization.

