
Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 439�

� �

�

CHAPTER 13
Check-Pointing and Calibration

In the previous chapter, we learned to differentiate simulations against
model parameters in constant time, and produced microbuckets (sensitivi-

ties to local volatilities) in Dupire’s model with remarkable speed. In this
chapter, we present the key check-pointing algorithm, apply it to differentia-
tion through calibrations to obtain market risks out of sensitivities to model
parameters, and implement superbucket risk reports (sensitivities to implied
volatilities) in Dupire’s model.

13.1 CHECK-POINTING

Reducing RAM consumption with check-pointing

We pointed out in Chapter 11 that, due to RAM consumption, AAD cannot
efficiently differentiate calculations taking more than 0.01 seconds on a core.
Longer calculations, which include almost all cases of practical relevance,
must be divided into pieces shorter than 0.01 seconds.core, and differenti-
ated separately over each piece, wiping RAM in between and aggregating
sensitivities in the end.

How exactly this is achieved depends on the instrumented algorithm.
This is particularly simple in the case of path-wise simulations, where sensi-
tivities are computed path by path and averaged in the end. But this solution
is specific to simulations. This chapter discusses a more general solution
called check-pointing. Check-pointing applies to many problems of prac-
tical relevance, in finance and elsewhere. Huge successfully applied it to the
differentiation of multidimensional FDM in [90]. Huge and Savine applied it
to efficiently differentiate the LSM algorithm and produce a complete xVA
risk in [31]. We explain check-pointing in general mathematical and pro-
grammatic terms and apply it to the differentiation of calibration.

Formally, we differentiate a two-step algorithm, that is, a scalar function
F ∶ ℝn → ℝ that can be written as:

F(X) = H[G(X)]

439



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 440�

� �

�

440 MODERN COMPUTATIONAL FINANCE

where G ∶ ℝn → ℝm is a vector-valued function and H ∶ ℝm → ℝ is a scalar
function, assumed differentiable in constant time. We denote Y = G(X) and
z = F(X) = H[G(X)].

In the context of a calibrated financial simulation model, H is the value
of some transaction in some model with m parameters Y. We learned to
differentiate H in constant time in the previous chapter. G is an explicit1

calibration that produces the m model parameters Y out of n market vari-
ables X, with m ≤ n. F computes the value z of the transaction from the
market variables X. The differentials of F are the hedge coefficients, also
called market risks, that risk reports are designed to produce.

Importantly, there are many good reasons to split differentiation this
way, besides minimizing the size of the tape. In the context of financial sim-
ulations, intermediate differentials provide useful information for research
and risk management, the sensitivity of transactions to model parameters
and the sensitivity of model parameters to market variables aggregated into
market risks, but also constitute interesting information in their own right.
Besides, to differentiate calibration is fine when it is explicit, but to differen-
tiate a numerical calibration may result in unstable, inaccurate sensitivities.
We present in Section 13.3 a specific algorithm for the differentiation of
numerical calibrations. But we can only do that if we split differentiation
between calibration and valuation.

Another example is how we differentiated the simulation algorithm in
the previous chapter. We split the simulation algorithm F into an initializa-
tion phase G, which pre-calculates m deterministic results Y from the model
parameters X, and a simulation phase H, which generates and evaluates
paths and produces a value z out of X and Y.2 We implemented H in a
loop over paths, and differentiated each of its iterations separately, before
propagating the resulting differentials over G. This is a direct application of
check-pointing, although we didn’t call it by its name at the time. If we hadn’t
split the differentiation of F into the differentiation of G and the differen-
tiation of H, we could not have implemented path-wise differentiation that
efficiently. More importantly, we could not have conducted the differentia-
tion of H in parallel. In order to differentiate in parallel a parallel calculation,
we must first extract the parallel piece and differentiate it separately from
the rest, applying check-pointing to connect the resulting differentials.

As a final example, we could split the processing F of every path into
the generation G of the m-dimensional scenario Y and the evaluation H of
the payoff. We differentiated F altogether in the previous chapter, but for a

1Implicit (numerical) calibration is discussed later in this chapter when we present
the Implicit Function Theorem. For now, G is an explicit function that expresses the
model parameters out of market prices, like Dupire’s formula [12].
2So in this case F(X) = H[X,G(X)] not H[G(X)], but this doesn’t change anything,
as will be demonstrated shortly.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 441�

� �

�

Check-Pointing and Calibration 441

product with a vast number of cash-flows valued over a high-dimensional
path, like an xVA, we would separate the differentiation of the two to limit
RAM consumption.

In all these cases, H can be differentiated in constant time with AAD
because it is a scalar function. In theory, F is also differentiable in con-
stant time because it is also a scalar function. But we discussed some of the
many reasons why it may be desirable to split its differentiation. Hence, the
exercise is to split the differentiation of F into a differentiation of G and a dif-
ferentiation of H while preserving the constant time property. The problem
is that G is not a scalar function, hence it cannot be differentiated in constant
time with straightforward AAD. To achieve this, we need additional logic,
and it is this additional logic that is called check-pointing.

Formally, from the chain rule:

𝜕F
𝜕X

= 𝜕G
𝜕X

𝜕H
𝜕Y

and our assumption is that we have a constant time computation for 𝜕H
𝜕Y

.

But AAD cannot compute the Jacobian 𝜕G
𝜕X

in constant time. We have seen
in Chapter 11 that Jacobians take linear time in the number of results m.
With bumping, it takes linear time in n. In any case, it cannot be computed
in constant time. Furthermore, 𝜕G

𝜕X
𝜕H
𝜕Y

is the product of the m vector 𝜕H
𝜕Y

by

the m × n matrix 𝜕G
𝜕X

, linear in nm.

Check-pointing applies adjoint calculus to compute 𝜕F
𝜕X

in constant time,
in a sequence of steps where the adjoints of F and G are propagated sepa-
rately, without ever computing a Jacobian or performing a matrix product.

If, hypothetically, we did differentiate F altogether with a single appli-
cation of AAD, what would the tape look like?

G

H

z=H(Y)=F(X)

X Y=G(X)

It must be this way, because G is computed before H, and H only
depends on the results of G.

The part of the tape that belongs to H is self-contained for adjoint prop-
agation, because H only depends on Y, and not on the details of its internal
calculations within G.3 So the arguments to all calculations within H must

3We assume that G and H are functional in the sense that they produce outputs out
of inputs without modification of hidden state.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 442�

� �

�

442 MODERN COMPUTATIONAL FINANCE

be located on H’s part of the tape, including Y; they cannot belong to G’s
part of the tape.

The section of the tape that belongs to G (inclusive of inputs X and
outputs Y) is also self-contained. Evidently, the calculations within G cannot
depend on the calculations in H, which is evaluated later. And we have seen
that the calculations within H cannot directly reference those of G, except
through its outputs Y.

Hence, the tape for F is separable for the purpose of adjoint propagation:
it can be split into two self-contained tapes, with a common section Y as the
output to G’s tape and the input to H’s tape.

adjoint propagation

G

H

z=H(Y)=F(X)

X Y=G(X)

adjoint propagation

adjoint propagation

G

H

z=H(Y)=F(X)

X Y=G(X)

Y=G(X)

It should be clear that an overall back-propagation through the entire
tape of F is equivalent, and produces the same results, as two successive
back-propagations, first through the tape of H, and then through the tape
of G. Note that the order is reversed from evaluation, where G is evaluated
first and H is evaluated last.

It is this separation that allows the multiple benefits of separate differen-
tiations, including a smaller RAM consumption. Only one of the two tapes
of G and H is active at a time in memory, and the differentials of z = F(X)
are accumulated through adjoint propagation alone, hence, in constant time.
The check-pointing algorithm is articulated below:

1. Starting with a clean tape, compute and store Y = G(X) without AAD
instrumentation. The only purpose here is to compute Y. Put Y on tape.

2. Compute the final result z = H(Y) = F(X) with an instrumented evalua-
tion of H. This builds the tape for H.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 443�

� �

�

Check-Pointing and Calibration 443

3. Back-propagate from z to Y, producing the adjoints of Y: 𝜕H
𝜕Y

. Store this
result.

4. Wipe H’s tape. It is no longer needed.
5. Put X on tape.
6. Recompute Y = G(X) as in step 1, this time with AAD instrumentation.

This builds the tape for G.
7. Seed that tape with the adjoints of Y, that is the 𝜕H

𝜕Y
, known from step 3.

This is the defining step in the check-pointing algorithm. Instead of seed-
ing the tape with 1 for the end result (and 0 everywhere else), seed it with
the known adjoints for all the components of the vector Y.

8. Conduct back-propagation through the tape of G, from the known
adjoints of Y to those, unknown, of X.

9. The adjoints of X are the final, desired result: 𝜕F
𝜕X

= 𝜕G
𝜕X

𝜕H
𝜕Y

.
10. Wipe the tape.

The following figure shows the state of the tape after each step:

9

8

7

6

5

4

3

2

1
z=H(Y)=F(X)

1

z

z

Y=G(X)

Y=G(X)

Y=G(X)
𝜕H

adjoint propagation

𝜕Y

𝜕F
𝜕X 𝜕F

10 =
𝜕X

𝜕G
𝜕X

𝜕H
𝜕Y

𝜕H
𝜕Y

𝜕H
𝜕Y

X

X

X

X

X

Y=G(X)

Y=G(X)

Y=G(X)

Y=G(X)

adjoint propagation

It should be clear that this algorithm guarantees all of the following:

Constant time computation since only adjoint propagations are
involved. Note that the Jacobian of G is never computed. We
don’t know it at the term of the computation, and we don’t need



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 444�

� �

�

444 MODERN COMPUTATIONAL FINANCE

it to produce the end result. Also note that successive functions
are propagated in the reverse order to their evaluation. Check-
pointing is a sort of “macro-level” AAD where the nodes are not
mathematical operations but steps in an algorithm.

Correct adjoint accumulation since it should be clear that these
computations produce the exact same results as a full adjoint
propagation throughout the entire tape for F. It is actually the
same propagations that are executed, but through pieces of tape at
a time.

Reduced RAM consumption since only the one tape for G or H lives in
memory at a time.

In code, check-pointing goes as follows:

1 template<class T>
2 T H(const vector<T>& Y);
3
4 template<class T>
5 vector<T> G(const vector<T>& X);
6
7 // Implements check-pointing
8 // Takes input X
9 // Computes and returns F(X) = H[G(X)] and its derivatives

10 inline pair<double, vector<double>> checkPoint(const vector<double>& X)
11 {
12 // Start with a clean tape
13 auto* tape = Number::tape;
14 tape->clear();
15
16 // 1
17 // Compute Y
18 vector<double> Y = G(X);
19 // Convert to numbers
20 vector<Number> iY(Y.size());
21 convertCollection(Y.begin(), Y.end(), iY.begin());
22 // Note that also puts iY on tape
23
24 // 2
25 Number z = H(iY);
26
27 // 3
28 // Propagate
29 z.propagateToStart();
30 // Store derivatives
31 vector<double> dhdy(iY.size());
32 transform(iY.begin(), iY.end(), dhdy.begin(),
33 [](const Number& y) {return y.adjoint(); });
34
35 // 4
36 tape->clear();
37



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 445�

� �

�

Check-Pointing and Calibration 445

38 // 5
39 vector<Number> iX(X.size());
40 convertCollection(X.begin(), X.end(), iX.begin());
41
42 // 6
43 vector<Number> oY = G(iX);
44
45 // 7
46 for (size_t i = 0; i < oY.size(); ++i)
47 {
48 oY[i].adjoint() = dhdy[i];
49 }
50
51 // 8
52 Number::propagateAdjoints(prev(tape->end()), tape->begin());
53
54 // 9
55 pair<double, vector<double>> results;
56 results.first = z.value();
57 results.second.resize(iX.size());
58 transform(iX.begin(), iX.end(), results.second.begin(),
59 [](const Number& x) {return x.adjoint(); });
60
61 // 10
62 tape->clear();
63
64 return results;
65 }

We could write a generic higher-order function to encapsulate check-
pointing logic. But we refrain from doing so. It is best left to client code to
implement check-pointing at best in different situations. The AAD library
provides all the basic constructs to implement check-pointing easily and in
a flexible manner.

Note that the algorithm also works in the more general context where:

F(X) = H[X,G(X)]

because, then:

𝜕F
𝜕X

= 𝜕H
𝜕X

+ 𝜕H
𝜕Y

𝜕G
𝜕X

The left-hand side 𝜕H
𝜕X

is computed in constant time by differentiation of H
(we can do that: it has been our working hypothesis all along). The right-
hand side 𝜕H

𝜕Y
𝜕G
𝜕X

is computed by check-pointing.
Alternatively, we may redefine G to return the n coordinates of X in

addition to its result Y, and we are back to the initial case where F(X) =
H[G(X)].

This concludes our general discussion of check-pointing. Check-
pointing applies in vast number of contexts, to the point that every



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 446�

� �

�

446 MODERN COMPUTATIONAL FINANCE

nontrivial AAD instrumentation involves some form of check-pointing,
including the instrumentation of our simulation library in the previous
chapter, as pointed out earlier. In the next section, we apply check-pointing
to calibration and the production of market risks. In the meantime, we
quickly discuss application to black box code.

Check-pointing black box code

AAD instrumentation cannot be partial. The entire calculation code must be
instrumented, and all the active code must be templated. A partial instrumen-
tation would break the chain rule and prevent adjoints to correctly propagate
through non-instrumented active calculations, resulting in wrong differen-
tials. It follows that all the source code implementing a calculation must be
available, and modifiable, so it may be instantiated with the Number type.

In a real-world production environment, this is not always the case.
It often happens that part of the calculation code is a black box. We can call
this code to conduct some intermediate calculations, but we cannot easily
see or modify the source code. The routine may be part of third-party soft-
ware with signatures in headers and binary libraries, but no source code.
Or, the source code may be written in a different language. Or, the source is
available but cannot be modified, for technical, policy, or legal reasons.

Or maybe we could instrument the code but we don’t want to. An
intensive calculation code with a low number of active inputs may be best
differentiated either analytically or with finite differences. Or, as we will see
in the case of a numerical calibration, some code must be differentiated in
a specific manner, a blind differentiation, either with finite differences or
AAD, resulting in wrong or unstable derivatives. This applies to many itera-
tive algorithms, like eigenvalue decomposition, Cholesky decomposition, or
SVD regression, as noted by Huge in [93].

In all these cases, we have an intermediate calculation that remains non-
instrumented, and differentiated in its own specific way, which may or may
not be finite differences.4 Check-pointing allows to consistently connect this
piece in the context of a larger differentiation, the rest of the calculation
being differentiated in constant time with AAD.

For example, consider the differentiation of a calculation F that is eval-
uated in three steps, G ∶ ℝn → ℝm, BB ∶ ℝm → ℝp, and H ∶ ℝp → ℝ:

F(X) = H{BB[G(X)]}

where BB is the black box. It is not instrumented, and its Jacobian 𝜕BB∕𝜕G
is computed by specific means, perhaps finite differences. The problem is to

4A third-party black box can always be differentiated with finite differences.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 447�

� �

�

Check-Pointing and Calibration 447

conduct the rest of the differentiation in constant time with AAD, and con-
nect the Jacobian of the black box without breaking the derivatives chain.
We have discussed a walkaround in Chapter 8 in the context of manual
adjoint code. In the context of automatic adjoint differentiation, we have
two choices.

We could overload BB and make it a building block in the AAD library,
like we did for the Gaussian functions in Chapter 10. This solution invades
and grows the AAD library. It is recommended when BB is a low-level,
general-purpose algorithm, called from many places in the software.

In most situations, however, BB would be a necessary intermediate cal-
culation in a specific context, which doesn’t justify an invasion of the AAD
library. All we need is a walkaround in the instrumentation of F, along the
lines of Chapter 8, but with automatic adjoint propagation. We can imple-
ment such walkaround with check-pointing. Denote:

Y = G(X) , Z = BB(Y) , z = H(Z)

then, by the chain rule:

𝜕F
𝜕X

= 𝜕H
𝜕Z

𝜕BB
𝜕Y

𝜕G
𝜕X

We start with a non-instrumented calculation of Y = G(X), as is cus-
tomary with check-pointing. Next, we compute the value Z = BB(Y) of BB,
as well as its Jacobian 𝜕BB∕𝜕Y, computed, as discussed, by specific means.

Knowing Z, we compute the gradient 𝜕H∕𝜕Z, a row vector in dimension
p, of H, in constant time, with AAD instrumentation. We multiply it on the
right by 𝜕BB∕𝜕Y to find:

𝜕F
𝜕Y

= 𝜕H
𝜕Z

𝜕BB
𝜕Y

This row vector in dimension m is by definition the adjoint of Y in the cal-
culation of F. We can therefore apply the check-pointing algorithm. Execute
an instrumented instance of:

Y = G(X)

which builds the tape of G, seed the adjoints of the results Y with the known
𝜕F∕𝜕Y, and back-propagate to find the desired adjoints of X, that is 𝜕F∕𝜕X.

We successfully applied check-pointing to connect the specific differenti-
ation of BB with the rest of the differentiated calculation. The differentiation
of BB takes the times it takes, and a matrix-by-vector product is necessary
for the connection, but the rest of the differentiation proceeds with AAD in
constant time.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 448�

� �

�

448 MODERN COMPUTATIONAL FINANCE

13.2 EXPLICIT CALIBRATION

Dupire’s formula

We now turn toward financial applications of the check-pointing algorithm,
more precisely, the important matter of the production of market risks.

So far in this book, we implemented Dupire’s model with a given local
volatility surface 𝜎(S, t), represented in practice by a bilinearly interpolated
matrix. Its differentiation produced the derivatives of some transaction’s
value in the model with respect to this local volatility matrix.

But this is not the application Dupire meant for his model. Traders
are not interested in risks to a theoretical, abstract local volatility. Dupire’s
model is meant to be calibrated to the market prices of European calls and
puts, or, equivalently, market-implied Black and Scholes volatilities, such
that its values are consistent with the market prices of European options,
and its risk sensitivities are derivatives to implied volatilities, which repre-
sent the market prices of concrete instruments that traders may buy and sell
to hedge the sensitivities of their transactions.

Dupire’s model is unique in that its calibration is explicit. The calibrated
local volatility is expressed directly as a function of the market prices of
European calls by Dupire’s famous formula [12]:

𝜎2(S, t) =
2CT(S, t)

S2CKK(S, t)

where C(K,T) is today’s price of the European call of strike K and matu-
rity T, and subscripts denote partial derivatives.

Dupire’s formula may be elegantly demonstrated in a couple of lines with
Laurent Schwartz’s generalized derivatives and Tanaka’s formula (essentially
an extension of Ito’s lemma in the sense of distributions), following the foot-
steps of Savine, 2001 [44].

By application of Tanaka’s formula to the function f (x) = (x − K)+

under Dupire’s dynamics dSt
St

= 𝜎(St, t)dWt, we find:

d(St − K)+ = 1{St>K}dSt +
1
2
𝛿(St − K)S2

t 𝜎
2(St, t)dt

where 𝛿 is the Dirac mass. Taking (risk-neutral) expectations on both sides:

dE(St − K)+ = 0 + 1
2
𝜑t(K)K2𝜎2(K, t)dt



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 449�

� �

�

Check-Pointing and Calibration 449

where 𝜑t(K) = CKK(K, t) is the (risk-neutral) density of St in K, and since
E(St − K)+ = C(K, t), we have Dupire’s result:

dC(K, t)
dt

= 1
2

d2C(K, t)
dK2

K2𝜎2(K, t)

Similar formulas are found with this methodology in extensions
of Dupire’s model with rates, dividends, stochastic volatility, and jumps;
see [44].

The Implied Volatility Surface (IVS)

Dupire’s formula refers to today’s prices of European calls of all strikes K and
maturities T, or, equivalently, the continuous surface of Black and Scholes’s
market-implied volatilities �̂�(K,T). In Chapter 4, we pointed out that this
is also equivalent to marginal risk-neutral densities for all maturities, and
called this continuous surface of market prices an Implied Volatility Surface
or IVS.

The IVS must satisfy some fundamental properties to feed Dupire’s
formula: it must be continuous, differentiable in T, and twice differentiable
in K. CKK must be strictly positive, meaning call prices must be convex in
strike. We also require that CT > 0, meaning call prices are increasing in
maturity. CKK < 0 or CT < 0 would allow a static arbitrage (see for instance
[46]) so any non-arbitrageable IVS guarantees that CKK ≥ 0,CT ≥ 0. But
this is not enough. We need strict positiveness as well as continuity and
differentiability.

We pointed out in Chapter 4 that the market typically provides prices
for a discrete number of European options, and that to interpolate a
complete, continuous, differentiable IVS out of these prices was not a trivial
exercise. The implementation of the accepted solutions in the industry,
including Gatheral’s SVI ([40]) and Andreasen and Huge’s LVI ([41]), are
out of our scope here.

We circumvent this difficulty by defining an IVS from Merton’s jump-
diffusion model of 1976 [98]. Merton’s model is an extension of Black and
Scholes where the underlying asset price is not only subject to a diffusion,
but also random discontinuities, or jumps, occurring at random times and
driven by a Poisson process:

dSt

St
= 𝜎dW + JtdNt − comp ⋅ dt



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 450�

� �

�

450 MODERN COMPUTATIONAL FINANCE

where N is a Poisson process with intensity 𝜆 and the Js are a collection IID
random variables such that log(1 + Jt) ≈ Jt → N(m, v). The Poisson process
and the jumps are independent from each other and independent from the
Brownian motion. Jumps are roughly Gaussian with mean m and variance v.
comp = 𝜆

[
exp

(
m + v

2

)
− 1

]
≈ 𝜆m guarantees that S satisfies the martingale

property so the model remains non-arbitrageable.
Merton demonstrated that the price of a European call in this model can

be expressed explicitly as a weighted average of Black and Scholes prices:

C(K,T) =
∞∑

n=0

exp(−𝜆T)
n!

(𝜆T)nBS

×
(

S0 exp
[
n
(

m + v
2

)
− comp ⋅ T

]
,

√
𝜎2 + nv

T
,K,T

)

where BS(S, �̂�,K,T) is Black and Scholes’s formula. The model is purposely
written so the distribution of ST , conditional to the number n of jumps, is
log-normal with known mean and variance. The conditional expectation of
the payoff is therefore given by Black and Scholes’s formula, with a different
forward and variance depending on the number of jumps. It follows that
the price, the unconditional expectation, is the average of the conditional
expectations, weighted by the distribution of the number of jumps. The dis-
tribution of a Poisson process is well known, and Merton’s formula follows.

The term in the infinite sum dies quickly with the factorial, so it is safe, in
practice, to limit the sum to its first 5–10 terms. The formula is implemented
in analytics.h, along with the Black and Scholes’s formula.

We are using a continuous-time, arbitrage-free model to define the IVS;
therefore, the properties necessary to feed Dupire’s formula are guaranteed.
In addition, Merton’s model is known to produce realistic IVS with a shape
similar to major equity derivatives markets.

We are using a fictitious Merton market in place of the “real” market
so as to get around some technical difficulties unrelated to the purpose of
this document. This is evidently for illustration purposes only and not for
production.

We declare the IVS as a polymorphic class that provides a Black and
Scholes market-implied volatility for all strikes and maturities. The imple-
mentation is simplified in that it ignores rates or dividends. The following
code is found in ivs.h:

class IVS
{

// To avoid reference to a linear market
double mySpot;



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 451�

� �

�

Check-Pointing and Calibration 451

public:

IVS(const double spot) : mySpot(spot) {}

// Read access to spot
double spot() const
{

return mySpot;
}

// Raw implied vol
virtual double impliedVol(const double strike, const Time mat)

const = 0;

// ...

where the concrete IVS derives impliedVol() to provide a volatility surface.
The IVS also provides a method for the pricing of European calls:

// ...

// Call price
template<class T = double>
T call(

const double strike,
const Time mat) const

{
// blackScholes is defined in analytics.h, templated
return blackScholes<T>(

mySpot,
strike,
impliedVol(strike, mat),
mat);

}

// ...

where the function blackScholes is implemented in analytics.h, templated.
By application of Dupire’s formula, the IVS also provides the local volatility
for a given spot and time:

// ...

// Local vol, dupire’s formula
template<class T = double>
T localVol(

const double strike,
const double mat) const

{
// Derivative to time
const T c00 = call(strike, mat, risk);
const T c01 = call(strike, mat - 1.0e-04, risk);
const T c02 = call(strike, mat + 1.0e-04, risk);
const T ct = (c02 - c01) * 0.5e04;



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 452�

� �

�

452 MODERN COMPUTATIONAL FINANCE

// Second derivative to strike = density
const T c10 = call(strike - 1.0e-04, mat, risk);
const T c20 = call(strike + 1.0e-04, mat, risk);
const T ckk = (c10 + c20 - 2.0 * c00) * 1.0e08;

// Dupire’s formula
return sqrt(2.0 * ct / ckk) / strike;

}

// Virtual destructor needed for polymorphic class
virtual ~IVS() {}

};

As discussed, we define a concrete IVS from Merton’s model. All a con-
crete IVS must do is derive impliedVol():

1 class MertonIVS : public IVS
2 {
3 double myVol;
4 double myIntensity, myAverageJmp, myJmpStd;
5
6 public:
7
8 MertonIVS(const double spot, const double vol,
9 const double intens, const double aveJmp, const double stdJmp)

10 : IVS(spot),
11 myVol(vol),
12 myIntensity(intens),
13 myAverageJmp(aveJmp),
14 myJmpStd(stdJmp)
15 {}
16
17 double impliedVol(const double strike, const Time mat) const override
18 {
19 // Merton’s formula is defined in analytics.h
20 const double call
21 = merton(
22 spot(),
23 strike,
24 myVol,
25 mat,
26 myIntensity,
27 myAverageJmp,
28 myJmpStd);
29
30 // Implied volatility from price, also in analytics.h
31 return blackScholesIvol(spot(), strike, call, mat);
32 }
33 };

where merton() is an implementation of Merton’s formula, and black-
ScholesIvol() implements a numerical procedure to find an implied volatility
from an option price. Both are implemented in analytics.h.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 453�

� �

�

Check-Pointing and Calibration 453

We implemented a generic framework for IVS. Although we only imple-
mented one concrete IVS, and a particularly simple one that defines the
market from Merton’s model, we could implement any other concrete IVS,
including:

■ Hagan’s SABR [36] with parameters interpolated in maturity and under-
lying, as is market practice for interest rate options,

■ Heston’s stochastic volatility model [42] with parameters interpolated
in maturity, as is market practice for foreign exchange options.5

■ Gatheral’s SVI implied volatility interpolation [40], as is market stan-
dard for equity derivatives, or

■ Andreasen and Huge’s recent award-winning LVI [41] argitrage-free
interpolation.

Any concrete IVS implementation must only override the impliedVol()
method to provide a Black and Scholes implied volatility for any strike and
maturity. The rest, in particular the computation of Dupire’s local volatility,
is on the base IVS.

Calibration of Dupire’s model

It is easy to calibrate Dupire’s model to an IVS; all it takes is an implemen-
tation of Dupire’s formula. The formula guarantees that the resulting local
volatility surface in Dupire’s model matches the option prices in the IVS.
We write a free calibration function in mcMdlDupire.h. It accepts a target
IVS, a grid of spots and times, and returns a local volatility matrix, calibrated
sequentially in time:

1 #include "ivs.h"
2
3 #define ONE_HOUR 0.000114469
4
5 // Returns a struct with spots, times and lVols
6 template<class T = double>
7 inline auto dupireCalib(
8 // The IVS we calibrate to
9 const IVS& ivs,

10 // The local vol grid
11 // The spots to include
12 const vector<double>& inclSpots,
13 // Maximum space between spots

5Some companies still use an approximation based on second-order sensitivities
to volatility, a so-called “vega-volga-vanna” interpolation that vaguely mimics a
stochastic volatility model, although it is hard to see any advantage over a correct
implementation of Heston.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 454�

� �

�

454 MODERN COMPUTATIONAL FINANCE

14 const double maxDs,
15 // The times to include, note NOT 0
16 const vector<Time>& inclTimes,
17 // Maximum space between times
18 const double maxDt)
19 {
20 // Results
21 struct
22 {
23 vector<double> spots;
24 vector<Time> times;
25 matrix<T> lVols;
26 } results;
27
28 // Spots and times
29 results.spots = fillData(inclSpots, maxDs, 0.01); // min space = 0.01
30 results.times = fillData(inclTimes, maxDt,
31 ONE_HOUR, // min space = 1 hour
32 &maxDt, &maxDt + 1 // hack to include maxDt as first time
33 );
34
35 // Allocate local vols, transposed maturity first
36 matrix<T> lVolsT(results.times.size(), results.spots.size());
37
38 // Maturity by maturity
39 const size_t n = results.times.size();
40 for (size_t j = 0; j < n; ++j)
41 {
42 dupireCalibMaturity(
43 ivs,
44 results.times[j],
45 results.spots.begin(),
46 results.spots.end(),
47 lVolsT[j]);
48 }
49
50 // transpose is defined in matrix.h
51 results.lVols = transpose(lVolsT);
52
53 return results;
54 }

It is convenient to conduct the calibration sequentially in time, although
our Dupire stores local volatility in spot major. For this reason, we calibrate a
temporary volatility matrix in time major, and return its transpose (defined in
matrix.h). We calibrate each time slice independently with the free function
dupireCalibMaturity() defined in mcMdlDupire.h:

1 // Calibrates one maturity
2 // Main calibration function below
3 template <class IT, class OT, class T = double>
4 inline void dupireCalibMaturity(
5 // IVS we calibrate to
6 const IVS& ivs,
7 // Maturity to calibrate
8 const Time maturity,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 455�

� �

�

Check-Pointing and Calibration 455

9 // Spots for local vol
10 IT spotsBegin,
11 IT spotsEnd,
12 // Results, by spot
13 // With (random access) iterator, STL style
14 OT lVolsBegin)
15 {
16 // Number of spots
17 IT spots = spotsBegin;
18 const size_t nSpots = distance(spotsBegin, spotsEnd);
19
20 // Estimate ATM so we cut the grid 2 stdevs away to avoid instabilities
21 const double atmCall = double(ivs.call(ivs.spot(), maturity));
22 // Standard deviation, approx. atm call * sqrt(2pi)
23 const double std = atmCall * 2.506628274631;
24
25 // Skip spots below and above 2.5 std
26 int il = 0;
27 while (il < nSpots && spots[il] < ivs.spot() - 2.5 * std) ++il;
28 int ih = nSpots - 1;
29 while (ih >= 0 && spots[ih] > ivs.spot() + 2.5 * std) --ih;
30
31 // Loop on spots
32 for (int i = il; i <= ih; ++i)
33 {
34 // Dupire’s formula
35 lVolsBegin[i] = ivs.localVol(spots[i], maturity);
36 }
37
38 // Extrapolate flat outside std
39 for (int i = 0; i < il; ++i)
40 lVolsBegin[i] = lVolsBegin[il];
41 for (int i = ih + 1; i < nSpots; ++i)
42 lVolsBegin[i] = lVolsBegin[ih];
43 }

Finally, we have the following higher-level function in main.h for our
application:

1 // Returns spots, times and lVols in a struct
2 inline auto
3 dupireCalib(
4 // The local vol grid
5 // The spots to include
6 const vector<double>& inclSpots,
7 // Maximum space between spots
8 const double maxDs,
9 // The times to include, note NOT 0

10 const vector<Time>& inclTimes,
11 // Maximum space between times
12 const double maxDt,
13 // The IVS we calibrate to
14 // ’B’achelier, Black’S’choles or ’M’erton
15 const double spot,
16 const double vol,
17 const double jmpIntens = 0.0,
18 const double jmpAverage = 0.0,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 456�

� �

�

456 MODERN COMPUTATIONAL FINANCE

19 const double jmpStd = 0.0)
20 {
21 // Create IVS
22 MertonIVS ivs(spot, vol, jmpIntens, jmpAverage, jmpStd);
23
24 // Go
25 return dupireCalib(ivs, inclSpots, maxDs, inclTimes, maxDt);
26 }

It takes around 50 milliseconds to calibrate a local volatility grid of
30 spots between 50 and 200 and 60 times between now and 5 years, to
a Merton IVS with spot 100, volatility 15, jump intensity 5, mean −15
and standard deviation 10. With 150 spots and 260 times, it takes 400 ms.
Calibration is embarrassingly parallel and trivially multi-threadable across
maturities. This is left as an exercise.

We can easily test the quality of the calibration. Initialize Dupire’s model
with the result of the calibration. Price a set of European options of different
strikes and maturities (developed as a single product with multiple payoffs
on page 238) by simulation in this model, and compare with Merton’s price
as implemented in the merton() function in analytics.h in closed-form. In our
tests, Dupire and Merton prices match within a couple of basis points over a
wide range of strikes and maturities (with 500,000 paths, weekly time steps,
where a parallel Sobol pricing of 20 European calls with maturities up to
three years takes 400 milliseconds).

Risk views

The process calibration + simulation produces the value of a transaction
out of market-implied volatilities. Its differentials are sensitivities to market-
traded variables, more relevant for trading and hedging than sensitivities to
model parameters:

calibration

G

simulation

H
V0σ(K,T )ˆ σ(S,t)

Model parameters are obtained from market variables with a prior cal-
ibration step. Model sensitivities are obtained with AAD as explained and
developed in Chapter 12. We can therefore obtain the market sensitivities
by check-pointing the model sensitivities into calibration.

We developed, in the previous chapter, functionality to obtain the micro-
bucket 𝜕V0

𝜕𝜎(S,t) in constant time. We check-point this result into calibration to

obtain 𝜕V0
𝜕�̂�(K,T) , what Dupire calls a superbucket.

We are missing one piece of functionality: our IVS �̂�(K,T) is defined
in derived IVS classes, from a set of parameters, which nature depends on



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 457�

� �

�

Check-Pointing and Calibration 457

the concrete IVS. For instance, the Merton IVS is parameterized with a con-
tinuous volatility, jump intensity, and the mean and standard deviation of
jumps. The desired derivatives are not to the parameters of the concrete IVS,
but to a discrete set of implied Black and Scholes market-implied volatilities,
irrespective of how these volatilities are produced or interpolated.

To achieve this result, we are going to use a neat technique that profes-
sional financial system developers typically apply in this situation: we are
going to define a risk surface:

s(K,T)

such that if we denote �̂�(K,T) the implied volatilities given by the con-
crete IVS, our calculations will not use these original implied volatilities,
but implied volatilities shifted by the risk surface:

∑
(K,T) = �̂�(K,T) + s(K,T)

Further, we interpolate the risk surface s(K,T) from a discrete set of knots:

sij = s(Ki,Tj)

that we call the risk view. All the knots are set to 0, so:
∑

(K,T) = �̂�(K,T)

so the results of all calculations remain evidently unchanged by shifting
implied volatilities by zero, but in terms of risk, we get:

𝜕

𝜎(K,T)
= 𝜕

𝜕s(K,T)

The risk view does not affect the value, and its derivatives exactly corre-
spond to derivatives to implied volatilities, irrespective of how these implied
volatilities are computed.

We compute sensitivities to implied volatilities as sensitivities to the
risk view:

𝜕V0

𝜕sij

Risk views apply to bumping as well as AAD and are extremely useful,
in many contexts, to aggregate risks over selected market instruments.

In the context of Dupire’s model, we apply a risk view over an IVS fed to
Dupire’s formula. Dupire’s formula depends on the first- and second-order
derivatives of call prices, so the risk view must be differentiable. (Bi-)linear
interpolation is not an option. We must implement a smooth interpolation.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 458�

� �

�

458 MODERN COMPUTATIONAL FINANCE

A vast amount of smooth interpolations exist in literature, but what we need
is a localized one, otherwise the resulting risk spills over the volatility surface.
For these reasons, we implement a well-known, simple, localized and effi-
cient smooth interpolation algorithm called smoothstep, presented in many
places, including Wikipedia’s “Smoothstep” article. Like linear interpola-
tion, smoothstep interpolation finds xi such that xi < x0 ≤ xi+1, and, unlike
linear interpolation, which returns:

y0 = yi + (yi+1 − yi)t

where t = (x0 − xi)∕(xi+1 − xi), smoothstep returns:

y0 = yi + (yi+1 − yi)t2(3 − 2t)

Practically, we upgrade the interp() function of Chapter 6 to imple-
ment either linear or smoothstep interpolation. We also produce a two-
dimensional variant:

1 // interp.h
2
3 #include <algorithm>
4 using namespace std;
5
6 // Utility for interpolation
7 // Interpolates the vector y against knots x in value x0
8 // Interpolation is linear or smooth, extrapolation is flat
9 template <bool smoothStep=false, class ITX, class ITY, class T>

10 inline auto interp(
11 // sorted on xs
12 ITX xBegin,
13 ITX xEnd,
14 // corresponding ys
15 ITY yBegin,
16 ITY yEnd,
17 // interpolate for point x0
18 const T& x0)
19 ->remove_reference_t<decltype(*yBegin)>
20 {
21 // STL binary search, returns iterator on 1st no less than x0
22 // upper_bound guarantees logarithmic search
23 auto it = upper_bound(xBegin, xEnd, x0);
24
25 // Extrapolation?
26 if (it == xEnd) return *(yEnd - 1);
27 if (it == xBegin) return *yBegin;
28
29 // Interpolation
30 size_t n = distance(xBegin, it) - 1;
31 auto x1 = xBegin[n];
32 auto y1 = yBegin[n];
33 auto x2 = xBegin[n + 1];
34 auto y2 = yBegin[n + 1];



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 459�

� �

�

Check-Pointing and Calibration 459

35
36 auto t = (x0 - x1) / (x2 - x1);
37
38 // Note constexpr if
39 if constexpr (smoothStep)
40 {
41 // smoothstep
42 return y1 + (y2 - y1) * t * t * (3.0 - 2 * t);
43 }
44
45 else
46 {
47 // linear
48 return y1 + (y2 - y1) * t;
49 }
50 }
51
52 // 2D
53 template <bool smoothStep=false, class T, class U, class V, class W, class X>
54 inline V interp2D(
55 // sorted on xs
56 const vector<T>& x,
57 // sorted on ys
58 const vector<U>& y,
59 // zs in a matrix
60 const matrix<V>& z,
61 // interpolate for point (x0,y0)
62 const W& x0,
63 const X& y0)
64 {
65 const size_t n = x.size();
66 const size_t m = y.size();
67
68 // STL binary search, returns iterator on 1st no less than x0
69 // upper_boung guarantees logarithmic search
70 auto it = upper_bound(x.begin(), x.end(), x0);
71 const size_t n2 = distance(x.begin(), it);
72
73 // Extrapolation in x?
74 if (n2 == n)
75 return interp<smoothStep>(
76 y.begin(),
77 y.end(),
78 z[n2 - 1],
79 z[n2 - 1] + m,
80 y0);
81 if (n2 == 0)
82 return interp<smoothStep>(
83 y.begin(),
84 y.end(),
85 z[0],
86 z[0] + m,
87 y0);
88
89 // Interpolation in x
90 const size_t n1 = n2 - 1;
91 auto x1 = x[n1];



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 460�

� �

�

460 MODERN COMPUTATIONAL FINANCE

92 auto x2 = x[n2];
93 auto z1 = interp<smoothStep>(
94 y.begin(),
95 y.end(),
96 z[n1],
97 z[n1] + m,
98 y0);
99 auto z2 = interp<smoothStep>(

100 y.begin(),
101 y.end(),
102 z[n2],
103 z[n2] + m,
104 y0);
105
106 auto t = (x0 - x1) / (x2 - x1);
107 if constexpr (smoothStep)
108 {
109 // Smooth step
110 return z1 + (z2 - z1) * t * t * (3.0 - 2 * t);
111 }
112 else
113 {
114 // linear
115 return z1 + (z2 - z1) * t;;
116 }
117 }

Armed with smooth interpolation, we can define the RiskView object in
ivs.h. Note that (contrarily to the IVS), the risk view is templated since we
will be computing derivatives to its knots, and we want to do that with AAD:

1 // ivs.h
2
3 #include "interp.h"
4
5 // Risk view
6 template <class T>
7 class RiskView
8 {
9 bool myEmpty;

10
11 vector<double> myStrikes;
12 vector<Time> myMats;
13 matrix<T> mySpreads;
14
15 public:
16
17 // Default constructor, empty view
18 RiskView() : myEmpty(true) {}
19
20 // Intializes risk view AND put on tape
21 // Sets all spreads to 0
22 RiskView(const vector<double>& strikes, const vector<Time>& mats) :
23 myEmpty(false),
24 myStrikes(strikes),
25 myMats(mats),



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 461�

� �

�

Check-Pointing and Calibration 461

26 mySpreads(strikes.size(), mats.size())
27 {
28 for (auto& spr : mySpreads) spr = T(0.0);
29 }
30
31 // Get spread
32 T spread(const double strike, const Time mat) const
33 {
34 return myEmpty
35 ? T(0.0)
36 : interp2D<true>(myStrikes, myMats, mySpreads, strike, mat);
37 }
38
39 // Accessors by const ref
40 bool empty() const { return myEmpty; }
41 size_t rows() const { return myStrikes.size(); }
42 size_t cols() const { return myMats.size(); }
43 const vector<double>& strikes() const { return myStrikes; }
44 const vector<Time>& mats() const { return myMats; }
45 const matrix<T>& risks() const { return mySpreads; }
46
47 // Iterators
48 typedef typename matrix<T>::iterator iterator;
49 typedef typename matrix<T>::const_iterator const_iterator;
50 iterator begin() { return mySpreads.begin(); }
51 iterator end() { return mySpreads.end(); }
52 const_iterator begin() const { return mySpreads.begin(); }
53 const_iterator end() const { return mySpreads.end(); }
54
55 // For bump risk
56 void bump(const size_t i, const size_t j, const double bumpBy)
57 {
58 mySpreads[i][j] += bumpBy;
59 }
60 };

This code should be self-explanatory; the risk view is nothing more than
a two-dimensional interpolation object with convenient accessors and itera-
tors and knots set to zero. The method bump() modifies one knot by a small
amount bumpBy, from zero to bumpBy, so we can apply bump risk.

The next step is to effectively incorporate the risk view in the calculation.
We extend the methods call() and localVol() on the base IVS so they may be
called with a risk view.

1 // IVS base class
2 // ...
3
4 // Call price
5 template<class T = double>
6 T call(
7 const double strike,
8 const Time mat,
9 const RiskView<T>* risk = nullptr) const

10 {
11 // blackScholes is defined in analytics.h, templated



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 462�

� �

�

462 MODERN COMPUTATIONAL FINANCE

12 return blackScholes<T>(
13 mySpot,
14 strike,
15 impliedVol(strike, mat)
16 + (risk ? risk->spread(strike, mat) : T(0.0)),
17 mat);
18 }
19
20 // Local vol, dupire’s formula
21 template<class T = double>
22 T localVol(
23 const double strike,
24 const double mat,
25 const RiskView<T>* risk = nullptr) const
26 {
27 // Derivative to time
28 const T c00 = call(strike, mat, risk);
29 const T c01 = call(strike, mat - 1.0e-04, risk);
30 const T c02 = call(strike, mat + 1.0e-04, risk);
31 const T ct = (c02 - c01) * 0.5e04;
32
33 // Second derivative to strike = density
34 const T c10 = call(strike - 1.0e-04, mat, risk);
35 const T c20 = call(strike + 1.0e-04, mat, risk);
36 const T ckk = (c10 + c20 - 2.0 * c00) * 1.0e08;
37
38 // Dupire’s formula
39 return sqrt(2.0 * ct / ckk) / strike;
40 }
41
42 // ...

The modification is minor. A shift, interpolated from the risk view, is
added to the implied volatility for the computation of call prices, hence local
volatilities. Since the risk view is set to zero, this doesn’t modify results, but
it does produce risk with respect to the risk view’s knots.

Finally, we apply the same minor modification to the calibration func-
tions in McMdlDupire.h so they accept an optional risk view:

1 // mcMdlDupire.h
2
3 // Calibrates one maturity
4 // Main calibration function below
5 template <class IT, class OT, class T = double>
6 inline void dupireCalibMaturity(
7 // IVS we calibrate to
8 const IVS& ivs,
9 // Maturity to calibrate

10 const Time maturity,
11 // Spots for local vol
12 IT spotsBegin,
13 IT spotsEnd,
14 // Results, by spot
15 // With (random access) iterator, STL style
16 OT lVolsBegin,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 463�

� �

�

Check-Pointing and Calibration 463

17 // Risk view
18 const RiskView<T>& riskView = RiskView<double>())
19 {
20 // Number of spots
21 IT spots = spotsBegin;
22 const size_t nSpots = distance(spotsBegin, spotsEnd);
23
24 // Estimate ATM so we cut the grid 2 stdevs away to avoid instabilities
25 const double atmCall = double(ivs.call(ivs.spot(), maturity));
26 // Standard deviation, approx. atm call * sqrt(2pi)
27 const double std = atmCall * 2.506628274631;
28
29 // Skip spots below and above 2.5 std
30 int il = 0;
31 while (il < nSpots && spots[il] < ivs.spot() - 2.5 * std) ++il;
32 int ih = nSpots - 1;
33 while (ih >= 0 && spots[ih] > ivs.spot() + 2.5 * std) --ih;
34
35 // Loop on spots
36 for (int i = il; i <= ih; ++i)
37 {
38 // Dupire’s formula
39 lVolsBegin[i] = ivs.localVol(spots[i], maturity, &riskView);
40 }
41
42 // Extrapolate flat outside std
43 for (int i = 0; i < il; ++i)
44 lVolsBegin[i] = lVolsBegin[il];
45 for (int i = ih + 1; i < nSpots; ++i)
46 lVolsBegin[i] = lVolsBegin[ih];
47 }
48
49 #define ONE_HOUR 0.000114469
50
51 // Returns a struct with spots, times and lVols
52 template<class T = double>
53 inline auto dupireCalib(
54 // The IVS we calibrate to
55 const IVS& ivs,
56 // The local vol grid
57 // The spots to include
58 const vector<double>& inclSpots,
59 // Maximum space between spots
60 const double maxDs,
61 // The times to include, note NOT 0
62 const vector<Time>& inclTimes,
63 // Maximum space between times
64 const double maxDt,
65 // Risk view if required
66 // omitted: T = double , no risk view
67 const RiskView<T>& riskView = RiskView<double>())
68 {
69 // Results
70 struct
71 {
72 vector<double> spots;
73 vector<Time> times;



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 464�

� �

�

464 MODERN COMPUTATIONAL FINANCE

74 matrix<T> lVols;
75 } results;
76
77 // Spots and times
78 results.spots = fillData(inclSpots, maxDs, 0.01); // min space = 0.01
79 results.times = fillData(inclTimes, maxDt,
80 ONE_HOUR, // min space = 1 hour
81 &maxDt, &maxDt + 1 // dirty trick to include maxDt
82 );
83
84 // Allocate local vols, transposed maturity first
85 matrix<T> lVolsT(results.times.size(), results.spots.size());
86
87 // Maturity by maturity
88 const size_t n = results.times.size();
89 for (size_t j = 0; j < n; ++j)
90 {
91 dupireCalibMaturity(
92 ivs,
93 results.times[j],
94 results.spots.begin(),
95 results.spots.end(),
96 lVolsT[j],
97 riskView);
98 }
99

100 // transpose is defined in matrix.h
101 results.lVols = transpose(lVolsT);
102
103 return results;
104 }

Superbuckets

We now have all the pieces to compute superbuckets by check-pointing.
We build a higher-level function in main.h that executes the steps of our
check-pointing algorithm:

struct SuperbucketResults
{

double value;
double delta;
vector<double> strikes;
vector<Time> mats;
matrix<double> vega;

};

// Returns value, delta, strikes, maturities
// and vega = derivatives to implied vols = superbucket
inline auto

dupireSuperbucket(
// Model parameters that are not calibrated
const double spot,
const double maxDt,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 465�

� �

�

Check-Pointing and Calibration 465

// Product
const string& productId,
const map<string, double>& notionals,
// The local vol grid
// The spots to include
const vector<double>& inclSpots,
// Maximum space between spots
const double maxDs,
// The times to include, note NOT 0
const vector<Time>& inclTimes,
// Maximum space between times
const double maxDtVol,
// The IVS we calibrate to
// Risk view
const vector<double>& strikes,
const vector<Time>& mats,
// Merton params
const double vol,
const double jmpIntens,
const double jmpAverage,
const double jmpStd,
// Numerical parameters
const NumericalParam& num)

{
// Results
SuperbucketResults results;

// ...

The first check-pointing step is compute local volatilities by calibration
(after initialization of the tape) and store the calibrated model in memory.

// ...

// Start with a clean tape
auto* tape = Number::tape;
tape->rewind();

// Calibrate the model
auto params = dupireCalib(

inclSpots,
maxDs,
inclTimes,
maxDtVol,
spot,
vol,
jmpIntens,
jmpAverage,
jmpStd);

const vector<double>& spots = params.spots;
const vector<Time>& times = params.times;
const matrix<double>& lvols = params.lVols;

// Put in memory
putDupire(spot, spots, times, lvols, maxDt, "superbucket");

// ...



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 466�

� �

�

466 MODERN COMPUTATIONAL FINANCE

Next, we compute the microbucket:

// ...

// Find delta and microbucket
auto mdlDerivs = dupireAADRisk(

"superbucket",
productId,
notionals,
num);

results.value = mdlDerivs.value;
results.delta = mdlDerivs.delta;
const matrix<double>& microbucket = mdlDerivs.vega;

// ...

where dupireAADRisk() is essentially a wrapper around AADrisk-
Aggregate() from the previous chapter, with an interface specific to Dupire
that returns a delta and a microbucket matrix:

1 // Returns a struct with price, delta and vega matrix
2 inline auto dupireAADRisk(
3 // model id
4 const string& modelId,
5 // product id
6 const string& productId,
7 const map<string, double>& notionals,
8 // numerical parameters
9 const NumericalParam& num)

10 {
11 // Check that the model is a Dupire
12 const Model<Number>* model = getModel<Number>(modelId);
13 if (!model)
14 {
15 throw runtime_error("dupireAADRisk() : Model not found");
16 }
17 const Dupire<Number>* dupire
18 = dynamic_cast<const Dupire<Number>*>(model);
19 if (!dupire)
20 {
21 throw runtime_error("dupireAADRisk() : Model not a Dupire");
22 }
23
24 // Results
25 struct
26 {
27 double value;
28 double delta;
29 matrix<double> vega;
30 } results;
31
32 // Go
33 auto simulResults = AADriskAggregate(
34 modelId,
35 productId,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 467�

� �

�

Check-Pointing and Calibration 467

36 notionals,
37 num);
38
39 // Find results
40
41 // Value
42 results.value = simulResults.riskPayoffValue;
43
44 // Delta
45
46 results.delta = simulResults.risks[0];
47
48 // Vegas
49
50 results.vega.resize(dupire->spots().size(), dupire->times().size());
51 copy(
52 next(simulResults.risks.begin()),
53 simulResults.risks.end(),
54 results.vega.begin());
55
56 return results;
57 }

The next part is the crucial one for the check-pointing algorithm: we
clean the tape, build the risk view (which puts it on tape), and conduct cali-
bration again, this time in instrumented mode:

// dupireSuperbucket()
// ...

// Clear tape
// tape->rewind();
tape->clear();

// Convert market inputs to numbers, put on tape

// Create IVS
MertonIVS ivs(spot, vol, jmpIntens, jmpAverage, jmpStd);

// Risk view --> that is the AAD input
// Note: that puts the view on tape
RiskView<Number> riskView(strikes, mats);

// Calibrate again, in AAD mode, make tape
auto nParams = dupireCalib(

ivs,
inclSpots,
maxDs,
inclTimes,
maxDtVol,
riskView);

matrix<Number>& nLvols = nParams.lVols;

// ...



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 468�

� �

�

468 MODERN COMPUTATIONAL FINANCE

We seed the calibration tape with the microbucket obtained earlier:

// ...

// Seed local vol adjoints on tape with microbucket results
for (size_t i = 0; i < microbucket.rows(); ++i)
{

for (size_t j = 0; j < microbucket.cols(); ++j)
{

nLvols[i][j].adjoint() = microbucket[i][j];
}

}

// ...

and propagate back to the risk view:

// ...

// Propagate
Number::propagateAdjoints(prev(tape->end()), tape->begin());

// ...

This completes the computation. We pick the desired derivatives as the
adjoints of the knots in the risk view, clean the tape, and return the results:

// ...

// Results: superbucket = risk view

// Copy results
results.strikes = strikes;
results.mats = mats;
results.vega.resize(riskView.rows(), riskView.cols());
transform(riskView.begin(), riskView.end(), results.vega.begin(),

[](const Number& n)
{

return n.adjoint();
});

// Clear tape
tape->clear();

// Return results
return results;

}

We illustrated two powerful and general techniques for the production
of financial risk sensitivities: the risk view, which allows to aggregate risks
over instruments selected by the user, irrespective of calibration or the defi-
nition of the market; and check-pointing, which separates the differentiation
of simulations from the differentiation of calibration, so that the differen-
tiation of simulations may be performed with path-wise AAD, with limited
RAM consumption, in parallel and in constant time.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 469�

� �

�

Check-Pointing and Calibration 469

Finally, note that we left delta unchanged through calibration. We are
returning the Dupire delta, the sensitivity to the spot with local volatility
unchanged. With the superbucket information, we could easily adjust delta
for any smile dynamics assumption (sticky, sliding, . . . ). There is no strong
consensus within the trading and research community as to what the “cor-
rect” delta is, but most convincing research points to the Dupire delta as the
correct delta within a wide range of models; see, for instance, [99].

Finite difference superbucket risk

As a reference, and in order to test the results of the check-pointing algo-
rithm, we implement a superbucket bump risk, where we differentiate, with
finite differences, the whole process calibration + simulation in a trivial man-
ner in main.h:

1 // Returns value, delta, strikes, maturities
2 // and vega = derivatives to implied vols = superbucket
3 inline auto
4 dupireSuperbucketBump(
5 // Model parameters that are not calibrated
6 const double spot,
7 const double maxDt,
8 // Product
9 const string& productId,

10 const map<string, double>& notionals,
11 // The local vol grid
12 // The spots to include
13 const vector<double>& inclSpots,
14 // Maximum space between spots
15 const double maxDs,
16 // The times to include, note NOT 0
17 const vector<Time>& inclTimes,
18 // Maximum space between times
19 const double maxDtVol,
20 // The IVS we calibrate to
21 // Risk view
22 const vector<double>& strikes,
23 const vector<Time>& mats,
24 // Merton params
25 const double vol,
26 const double jmpIntens,
27 const double jmpAverage,
28 const double jmpStd,
29 // Numerical parameters
30 const NumericalParam& num)
31 {
32 // Results
33 SuperbucketResults results;
34
35 // Calibrate the model
36 auto params = dupireCalib(
37 inclSpots,
38 maxDs,
39 inclTimes,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 470�

� �

�

470 MODERN COMPUTATIONAL FINANCE

40 maxDtVol,
41 spot,
42 vol,
43 jmpIntens,
44 jmpAverage,
45 jmpStd);
46 const vector<double>& spots = params.spots;
47 const vector<Time>& times = params.times;
48 const matrix<double>& lvols = params.lVols;
49
50 // Create model
51 Dupire<double> model(spot, spots, times, lvols, maxDt);
52
53 // Get product
54 const Product<double>* product = getProduct<double>(productId);
55
56 // Base price
57 auto baseVals = value(model, *product, num);
58
59 // Vector of notionals
60 const vector<string>& allPayoffs = baseVals.identifiers;
61 vector<double> vnots(allPayoffs.size(), 0.0);
62 for (const auto& notional : notionals)
63 {
64 auto it = find(
65 allPayoffs.begin(),
66 allPayoffs.end(),
67 notional.first);
68 if (it == allPayoffs.end())
69 {
70 throw runtime_error(
71 "dupireSuperbucketBump() : payoff not found");
72 }
73 vnots[distance(allPayoffs.begin(), it)] = notional.second;
74 }
75
76 // Base book value
77 results.value = inner_product(
78 vnots.begin(),
79 vnots.end(),
80 baseVals.values.begin(),
81 0.0);
82
83 // Create IVS
84 MertonIVS ivs(spot, vol, jmpIntens, jmpAverage, jmpStd);
85
86 // Create risk view
87 RiskView<double> riskView(strikes, mats);
88
89 // Bumps
90
91 // bump, recalibrate, reset model, reprice, pick value, unbump
92
93 // Delta
94
95 // Recreate model
96 Dupire<double> bumpedModel(
97 spot + 1.0e-08,
98 spots,



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 471�

� �

�

Check-Pointing and Calibration 471

99 times,
100 lvols,
101 maxDt);
102 // Reprice
103 auto bumpedVals = value(bumpedModel, *product, num);
104 // Pick results and differentiate
105 results.delta = (
106 inner_product(
107 vnots.begin(),
108 vnots.end(),
109 bumpedVals.values.begin(),
110 0.0)
111 - results.value) * 1.0e+08;
112
113 // Vega
114
115 const size_t n = riskView.rows(), m = riskView.cols();
116 results.vega.resize(n, m);
117 for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < m; ++j)
118 {
119 // Bump
120 riskView.bump(i, j, 1.0e-05);
121 // Recalibrate
122 auto bumpedCalib = dupireCalib(
123 ivs,
124 inclSpots,
125 maxDs,
126 inclTimes,
127 maxDtVol,
128 riskView);
129 // Recreate model
130 Dupire<double> bumpedModel(
131 spot,
132 bumpedCalib.spots,
133 bumpedCalib.times,
134 bumpedCalib.lVols,
135 maxDt);
136 // Reprice
137 auto bumpedVals = value(bumpedModel, *product, num);
138 // Pick results and differentiate
139 results.vega[i][j] = (
140 inner_product(
141 vnots.begin(),
142 vnots.end(),
143 bumpedVals.values.begin(),
144 0.0)
145 - results.value) * 1.0e+05;
146 // Unbump
147 riskView.bump(i, j, -1.0e-05);
148 }
149
150 // Copy results and strikes
151 results.strikes = strikes;
152 results.mats = mats;
153
154 // Return results
155 return results;
156 }



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 472�

� �

�

472 MODERN COMPUTATIONAL FINANCE

Results

We start with the superbucket of a European call of maturity 3 years, strike
120, over a risk view with 14 knot strikes, every 10 points between 50 and
180, and 5 maturities every year between 1y and 5y.

We define the European option market as a Merton market with volatil-
ity 15, jump intensity 5, mean jump −15 and jump standard deviation 10.
We calibrate a local volatility matrix with 150 spots between 50 and 200,
and 60 times between now and 5 years.6 We simulate with 300,000 Sobol
points in parallel over 312 (biweekly) times steps.

The Merton price is 4.25. Dupire’s price is off two basis points at 4.23.
The corresponding Black and Scholes implied volatility is 15.35. The Black
and Scholes vega is 59. We should expect a superbucket with 59 on the
strike 120, maturity 3 years, and zero everywhere else. The superbucket is
obtained in around two seconds. Almost all of it is simulation. Calibration
and check-pointing are virtually free.

With the improvements of Chapter 15, the superbucket is produced in
one second.

The resulting superbucket is displayed on the chart below.

70

60

50

40

30

20

10

–

–10

1.00 2.00 3.00 4.00 5.00

50
.0

0
60

.0
0

70
.0

0
80

.0
0

90
.0

0

10
0.

00

11
0.

00

12
0.

00

13
0.

00

14
0.

00

15
0.

00

16
0.

00

17
0.

00

18
0.

00

6To obtain a stable superbucket takes a fine-grained microbucket and simulation
timeline, many paths, and a sparse risk view.



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 473�

� �

�

Check-Pointing and Calibration 473

This is a good-quality superbucket, especially given it was obtained with
simulations in just over a second. Superbuckets traditionally obtained with
FDM are of similar quality and also take around a second to compute.
Once again, we notice that AAD and parallelism bring FDM performance
to Monte-Carlo simulations.

With the same settings (10 points spacing on the risk view), we compute
the superbucket for a 2 years 105 call (first chart) and a 2.5 years 85 call
(second chart). The results are displayed below. The calculation is propor-
tionally faster for lower maturities, linearly in the total number of time steps.
We see that vega is correctly interpolated over the risk view (with limited
spilling that eventually disappears as we increase the number of paths and
time steps).

30

25

20

15

10

5

–

–5

1.00 2.00 3.00 4.00 5.00

50
.0

0
60

.0
0

70
.0

0
80

.0
0

90
.0

0

10
0.

00

11
0.

00

12
0.

00

13
0.

00

14
0.

00

15
0.

00

16
0.

00

17
0.

00

18
0.

00



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 474�

� �

�

474 MODERN COMPUTATIONAL FINANCE

14

12

10

8

6

4

2

–2

–

1.00 2.00 3.00 4.00 5.00

50
.0

0
60

.0
0

70
.0

0
80

.0
0

90
.0

0

10
0.

00

11
0.

00

12
0.

00

13
0.

00

14
0.

00

15
0.

00

16
0.

00

17
0.

00

18
0.

00

Finally, with a maturity of 3 years, strike 120, and a (biweekly moni-
tored) barrier of 150 (with a barrier smoothing of 1), we obtain the follow-
ing. The calculation time is virtually unchanged, the barrier monitoring cost
being essentially negligible.

60

40

20

–

–20

–40

–80

–60

1.00 2.00 3.00 4.00 5.00

50
.0

0
60

.0
0

70
.0

0
80

.0
0

90
.0

0

10
0.

00

11
0.

00

12
0.

00

13
0.

00

14
0.

00

15
0.

00

16
0.

00

17
0.

00

18
0.

00



Trim Size: 6in x 9in Savine539452 c13.tex V1 - 09/20/2018 8:21am Page 475�

� �

�

Check-Pointing and Calibration 475

This barrier superbucket has the typical, expected shape for an up-
and-out call: positive vega concentrated at maturity on the strike, negative
vega, also concentrated at maturity (with some spilling over the preceding
maturity on the risk view from the interpolation), below the barrier,
partly unwound by (perhaps counterintuitive but a systematic observation
nonetheless) positive vega on the barrier.

Comparing with a bump risk for performance and correctness, we find
that finite differences produce a very similar risk report in 45 around sec-
onds. For a 3y maturity, it could be reduced to 30 seconds by only bumping
active volatilities. We are computing “only” 42 risk sensitivities (14 strikes
and 3 maturities up to 3y on the risk view), so AAD acceleration is less
impressive here: times 30, probably down to times 20 with a smarter imple-
mentation of the bump risk.

However, in this particular case, AAD risk is also much more stable.
The results of the bumped superbucket depend on the size of the bumps and
the spacing of the local volatility and the risk view, in an unstable, explo-
sive manner. It frequently produces results in the thousands in random cells
where vega is expected in the tens. AAD superbuckets are resilient and stable,
because derivatives are computed analytically, without ever actually chang-
ing the initial conditions.

Finally, the quality of the superbucket is dependent on how sparse is
the risk view, and rapidly deteriorates when more strikes and maturities are
added to it. This is a problem with superbuckets known in the industry: to
obtain decent superbuckets over a thinly spaced risk view forces to increase
the time steps at the expense of speed. It helps to implement simulation
schemes more sophisticated than Euler’s.


