Index

Page references to Figures are followed by the letter ' f ', references to Tables by the letter ' t ', while references to Footnotes are followed by the letter ' n '

a

accounting loss 141, 183
activity levels 150, 189
optimal accounting loss
figures 5, 10
activity levels $8,124,284$
interpreted as individual product
levels 148-155
interpreted as individual resource
levels 186-193
optimal/optimal output 4,9
activity vector
changing component of
210-215
multiactivity production
function 129
parameterizing 245-256
activity/activities
see also activity levels;
activity vector
additive 129
composite 129, 132-133, 158
independent 130
input 1-2
marginal cost function
for 276-284, 282t
output $6,7,183-185,187,190,191$
composite output activity 171
multiactivity joint-production model 171-174
output activity mix 189
output activity vector 165
production $1,4,6,123$
quadratic programming and activity analysis 335-338
shadow 181
simple 123, 130
supply function for the output of 257-262
additive activity 129
additive identity 20
additive inverse 20
admissible solutions 298
Alder, G. 162
algebra
matrix 13-20
vector 20-22
Allen, R.G.D. 123
allocative efficiency (AE) 380, 383-384
almost complementary basic solution 330-332

Linear Programming and Resource Allocation Modeling, First Edition. Michael J. Panik.
© 2019 John Wiley \& Sons, Inc. Published 2019 by John Wiley \& Sons, Inc.

Index
artificial augmented structural constraint system 72
artificial linear programming problem
inconsistency and redundancy 78, 81, 83
M-Penalty method 73, 75-77
artificial objective function 74
artificial variables $73,93,111$
complementary pivot method 330, 331
inconsistency and redundancy 79,84
linear fractional functional programming 352
two-phase method 88
artificial vectors
inconsistency and redundancy $78,79,81,82$
M-Penalty method 73, 75
two-phase method 91, 93
associative law
matrix algebra 14,15
vector algebra 20
augmented linear programming problem 36
augmented matrix 23,24
augmented structural constraint system 36, 39, 53
artificial 72
primal 155-156
average cost function average (real) resource cost function 168, 169f, 179f
determining 286-295
average product $136 \mathrm{f}, 290$, 291-292
average product function 139 f
average productivity
average productivity
function 127, 138
determining 286-295
average profit 2,354
average variable cost 142,292

b

back-substitution 25
Banker, R.D. 373-374, 385-386, 398-402
basic feasible solutions see feasible solutions
basic solution 28
basic variables 39,156
see also nonbasic variables
complementary pivot method 333
computational aspects 43-48, 68, 69
improving basic feasible solutions 50,51,53-55, 58-60, 62-66
duality theory 106,121
dual simplex method 113, $115,117,118,120$
inconsistency and redundancy 80, 81, 83, 84
M-Penalty method 73, 76, 77
parametric programming 229, 237, 239, 255, 272, 274, 278, 281, 287
sensitivity analysis 200, 202, 203, 205, 213
simplex-based optimization methods 331-334, 340-344, 355
structural changes 223, 226
two-phase method 87, 90
basis for $\Sigma^{\mathrm{m}} \quad 27$
basis inverse, updating 256
basis matrix $B \quad 39,49,201,203$
Baumol, W.J. 123, 146-148, 311-315, 338
BCC (Banker, Charnes and Cooper) model
basic 398-399
input-oriented 399
projection 400,402
returns to scale 401-402
solving 400
Belinski, M. 311-315, 338
best-practice extremal frontier 373
binding constraints 37
Bitran, C. $345,346,355$
boundary point 29
Bram, J. 326

C

canonical forms 35-36
primal problem 95, 97
capacity, excess 4
Cauchy-Schwarz inequality 21
certainty 1,6
Chadha, S. 347-353
Charnes, A. 338, 373-374, 385-390
closed half-planes 29
coefficient matrix, changing component of 202-208, 209t
Coelli, T.J. 377-379, 383-384
commutative law
matrix algebra 14
vector algebra 20, 21
competition, perfect see perfect competition
complementarity, perfect 124
complementarity condition 329
complementary inputs 1,2
complementary outputs 7
complementary pivot method 329-335
complementary slackness conditions 150-151, 189, 306, 324
complementary slackness theorems 319-320
strong 104-106, 109-111
weak 102-104, 106, 109-111, 116
complementary solutions/ complementary basic solutions 329
composite activity $129,132-133,158$
composite output activity 171
computational aspects 43-70
degenerate basic feasible solutions 66-69
dual simplex method 114-121
improving basic feasible solutions 48-65
simplex matrix $59-65,68-70$
simplex method 43-48, 69-70
constant product curves 125
see also isoquants
constant returns to scale (CRS) 373
input-oriented DEA model under 387-390
constraint system 35
convex cone $30,31 \mathrm{f}, 32$
convex hull 33
convex polygons 174
convex polyhedral cone 31, 133
convex polyhedron $33,34,339$
convex sets
boundary point 29
closed half-planes 29
cones 31-33
convex combination of $X_{1}, X_{2}, \quad 29$
hyperplane 29
interior point 29
linear form 29
and n-dimensional geometry 29-34
open half-planes 30
open or closed 29
quadratic programming 322
set of all convex combinations 33
spherical δ-neighborhood 29
strict separability 30
strictly bounded 29
supporting hyperplane 30
weak separation theorem 30
convexification constraint 398
Cooper, W.W. 338, 385-386, 398-402
cost efficiency (CE) 383-384
cost indifference curves see isocost curves
cost minimization 7
and joint production 180-184
producing a given output 284-285
costs
see also cost efficiency (CE); cost indifference curves; cost minimization; marginal cost; total cost
average cost functions, determining 286-295
marginal see marginal cost
optimal dollar value of total cost 9
total imputed cost of firm's minimum output requirements 9
total potential cost reduction 9
Craven, B. 338, 347-353
critical values
parametric analysis $228,236,237$, 242, 246, 249, 250
parametric programming and theory of the firm 262, 267, 269, 277
CRS see constant returns to scale (CRS)

d

Dano, S. 123, 139-146
data envelopment analysis (DEA) 373-404, 374
see also BCC (Banker, Charnes and Cooper) model; decision making units (DMUs)
allocative efficiency 380
best-practice extremal frontier 373

CCR (Charnes, Cooper and Rhodes) model 398, 400
constant returns to scale (CRS) 373
input-oriented DEA model under 387-390
convexification constraint 398
input and output slack variables 390-398
input distance function (IDF) 378-379
input-oriented 373,387-390
envelopment form 389
isoquants 375
modeling 385-386
multiplier form 388
nonparametric 374
nonstochastic 374
output correspondence 375
output distance function
(ODF) 377-378
output-oriented 373, 402-404
production
correspondence 386-387
projection path 373
set theoretic representation of a production
technology 374-377
solving the BCC model 400
strong disposability 374,375
technical efficiency 379, 380-383
technology set 374,375
variable returns to scale
(VRS) 373, 398-402
Debreu, G. 380-383
decision making units
(DMUs) 373, 374, 377, 379
see also data envelopment analysis (DEA)
degree of input-oriented technical efficiency 380-381
efficient frontier 389
fully efficient 382, 383
input and output slack
variables 393-397
peer group 388
reference set 388 , 400
synthetic 396,397
unit isoquant of fully efficient DMUs 380
unit production possibility curve of fully efficient DMUs 381, 384
degenerate basic feasible solutions 66-69
demand function for a variable input 262-269
diagonal matrix 14
diminishing returns 135
direct proportionality $2,6-7$
distance 21
distributive laws
matrix algebra 14,15
vector algebra 20, 21
divisibility, perfect see perfect divisibility
DMUs see decision making units (DMUs)
Dorfman, R. 123
Dorn, W. 326
Dreyfus, S. 315-320
dual degeneracy 121
dual feasibility see primal optimality (dual feasibility)
dual problem see also duality theory; primal problem
artificial augmented form 113
dual quadratic programs
326-328
dual solution, constructing 106-113
duality theorems 103, 349, 353
generalized multiactivity profitmaximization model 161
joint production and cost minimization 184
as minimization (maximization) problem 95
optimal solutions $145,184,306$, 399, 401
reformulation 297-310
simplex matrix 116
single-activity profit maximization model 141
dual quadratic programs 325-328
dual simplex method 113-114
addition of a new structural constraint 221, 222
basic feasible solutions 114, 117, 119
computational aspects 114-121
deletion of a variable 223
as an internalized resource allocation process 157
optimal solutions $114,121,122$
summary 121-122
dual solution, constructing 106-113
dual structural constraints 183, 184, 338
data envelopment analysis (DEA) 389
dual solution, constructing 107, 108
duality and complementary slackness theorems 320
duality theorems 104, 105
multiactivity profit maximization model 145
reformulation of primal and dual problems 308
simplex method 156
single-activity profit maximization model 141
symmetric duals 96
dual structural constraints (cont'd) unsymmetrical duals 99
dual support cone 301
duality theory $4,95-122$, 297-370
see also dual problem; dual simplex method; dual structural constraints
and complementary slackness theorems 315-320
constructing the dual solution 106-113
identity matrix see identity matrix
Lagrangian saddle points 297, 311-315
in linear fractional functional programming 347-353
optimal solutions $95,106,107$, 121, 122, 298, 302, 306, 313-315
duality theorems 101, 104
pivot operations $114,118,120,122$
primal 95
reformulation of primal and dual problems 297-310
simplex matrix $107-116,118$, 119, 121
symmetric duals 95-97, 98
Taylor formula 316, 317
theorems 100-106, 315-319, 348-353
unsymmetrical duals 97-100

e

echelon matrix 23,24
economic efficiency 126,167
economic rent 338
efficiency
allocative, cost, and revenue 383-384
constant returns to scale (CRS) 388
economic 126,167
efficient subsets 375
fully efficient DMUs 382, 383
input efficient subsets 377
output efficient subsets 375
technical see technical efficiency (TE)
unit isoquant of fully efficient DMUs 380
unit production possibility curve of fully efficient DMUs 381, 384
elementary row operation 16
excess capacity 4
existence theorem 101
expansion path $126,127,294$
joint output $167,169 \mathrm{f}$
expected payoff 357,359
extreme point solutions $39-40$
parametric analysis 231,234
extreme points 33,43
linear fractional functional programming 339-340
parametric analysis 238, 239

f

factor learning
learning economies 162
learning index 163
learning rates 162,163
negative exponential 163
and optimum product mix model 164-165
progress elasticity 163
factor substitution 130
Färe, R. 374-379
Farrell, M.J. 380-383
feasible directions 298
feasible solutions
see also optimal solutions; primal optimality (dual feasibility); solutions
basic/optimal basic
addition of a new structural constraint 220,221, 222
degenerate 39,66-69
deletion of a structural constraint 223-224
demand function for a variable input 262, 264-269
determination of marginal productivity, average productivity and marginal cost 287-288, 290, 293
dual simplex method 114, 117, 119
dual solution, constructing 106, 108, 111
improving 48-65
inconsistency and redundancy 79-85
linear fractional functional programming 340 , 345, 352
marginal (net) revenue productivity function for an input 271, 273, 274, 278, 279, 281, 284
minimizing cost of producing a given output 285
M-Penalty method 73, 76, 77, 78
new variable, addition of 217-219
nondegenerate 40,66
parametric analysis 227-229, 231-233, 235-236, 239-243, 245, 248
quadratic programming 324
resource allocation with a fractional objective 354
simplex method 155,156
supply function for the output of an activity 258-260
two-phase method 90-93
updating the basis inverse 256
definition 36
dual quadratic programs 325, 326
duality theorems 349
extreme points 43
linear complementarity problem (LCP) 329
nonbasic 89
profit indifference curves 148
region of $35,38,148,298$
Ferguson, C.E. 123, 139-146
finite cone 30-31
firm
technology of 123-125
theory of see theory of the firm
fixed coefficients linear technology 157
fixed inputs $4,5,11$
see also inputs
data envelopment analysis (DEA) 384
quadratic programming 335
theory of the firm 155,157 , 159, 164
activity levels 150, 151
multiactivity profit
maximization model 144, 145 n
and parametric programming 257, 262, 269, 271, 275-277, 284, 290
single-activity profit maximization model 140, 142
fixed resources 5, 6
see also resources
foregone profit 4,5
fractional objective, resource allocation with 353-356
fractional programs 387
Freimer, M. 315-320

Fried, H. 374-379
Frisch, R. 181n
fundamental theorems of linear programming 101,102

g

game theory 356-363
defining a game 356
expected outcome 357
expected payoff 357, 359
fundamental theorem 359-360
generalized saddle point 357
matrix games 357-360
transformation to a linear program 361-363
mixed strategies 358, 359, 360, 363
normal form 357
outcome strictly dominated 357
payoff function 357
saddle point solution 358
strategies 356, 358, 359, 360
two-person games 356,357
value of the game 359
zero-sum game 356
Gauss elimination technique 24
generalized multiactivity profitmaximization model 157-161, 335, 353
generalized saddle point 359
generalized saddle value 360
gross profit 3
gross profit margin 141, 144, 159, 161, 337, 338
simplex-based optimization methods 337, 338, 355
theory of the firm 145,156 , 157, 164
and parametric programming 257, 262, 263, 269, 276-278, 281, 283-286

h

Hadar, J. 123, 139-146
half-line 124
homogeneity $21,26,27$
hyperplanes 29, 30, 339

i

identity matrix $14,45 n$
duality theory 108,112
M-Penalty method 72-75
parametric programming 256
sensitivity analysis 201
inconsistency 78-85
increasing (real resource) opportunity cost 175
indifference curves
cost 184-186, 190
production 146, 147
profit 146-148, 151-156
infeasibility form 88
input distance function
(IDF) 378-379
input isoquants 376-377
inputs
see also input distance function
(IDF); input isoquants;
outputs
activities 1,2
complementary 1
demand function for a variable input 262-269
fixed see fixed inputs
input activities 1-2
input correspondence 376
input efficient subsets 377
input set 376
input-conserving
orientation 379, 380
input-oriented BCC model 399
input-oriented DEA model 387-390
limitational 124
marginal (net) revenue productivity function for 269-276
optimal value of 5
shadow 180, 181n, 182
slack variables 390-398
strong disposability 375,376
interior point 29
isocost curves 184-186, 190
surface 192f, 193
iso-input transformation
curve 167,174
isoquants 125-127, 128f, 138, 375
see also theory of the firm
ABCD 133, 134
input 376-377
joint process 131
multiple processes 133 f
output 375
parametric representation 131
unit 131, 132, 380
"well-behaved," 135
j
joint output expansion path $167,169 f$
joint output linear production model 172
joint process isoquant 131
joint process linear production model 130
joint process transformation curve 172
joint product transformation curve (iso-input) 167, 174
joint production 6
see also production function; theory of the firm
and cost minimization 180-184
multiactivity joint-production model 171-180, 177f, 179f
processes 165-166

k

Karush-Kuhn-Tucker equivalence theorem 313-315
Karush-Kuhn-Tucker necessary and sufficient conditions 297
complementary pivot method 329-330
quadratic programming 323, 327, 337
Karush-Kuhn-Tucker theorem 303-310
corollaries 306-310
Kogiku, K.C. 123
Kornbluth, J. 347-353
Kuhn-Tucker-Lagrange necessary and sufficient conditions 160
Kydland, F. 347-353, 355

I

Lagrange technique 303
Lagrange multipliers 107, 160, 304, 306
Lagrangian expressions 107
Lagrangian saddle points 297, 311-315
linear fractional functional programming 350
Lasdon, L. 338
learning economies 162
learning index 163
learning rates 162, 163
Lemke, C.E. 113-114, 329-335
Liao, W. 164
limitationality $2,7,124,166$
mutual 126, 127
limiting subset 129
linear combinations 26-27
linear complementarity problem (LCP) 329
linear dependence 26-29
and linear independence 27
linear form 29, 321

Index
linear fractional functional programming 338-346
duality in 347-353
linear model for the firm $1-2$
linear programming problem
artificial 73
augmented 36
deletion of a structural constraint 223-224
graphical solution to 37
linear fractional programming 338
new variable, addition of 217
optimal solution to see optimal solutions
sensitivity analysis 195-196
surrogate $88,90,91,93$
symmetric duals 95
linear technology 123
Lovell, C.A.K. 374-379, 383-386

m

Magnanti, T. 355
marginal (net) revenue productivity function for an input 269-276
marginal cost
activity 189, 276-284, 282t
determining 286-295
imputed or shadow costs 9,10
joint production and cost minimization 183
marginal (real) resource cost function 168, 169f, 179f
marginal cost function for an activity 276-284
marginal cost relationships 142
multiactivity joint-production model 175 n
marginal product 136f, 175, 290, 291f
see also average product
marginal product function 170
marginal productivity
determining 286-295
marginal productivity function 127, 138
marginal profitability 156
marginal revenue 142
market prices 155
Martos, B. 338, 355
mathematical foundations
convex sets and n-dimensional geometry 29-34
linear dependence 26-29
matrix algebra 13-20
simultaneous linear equation systems 22-26
vector algebra 20-22
matrix
algebra see matrix algebra
augmented 23, 24
basis matrix $B \quad 39,49,201,203$
coefficient, changing component of 202-208, 209t
defined 13
diagonal 14
echelon 23, 24
identity $14,73-75,256$
nth order matrix A 18
output technology 171
premultiplier 15
postmultiplier 15
rank 23, 24
simplex see simplex matrix
submatrix $13,25,45$
transposition of 14
triangular 14
matrix algebra 13-20
see also matrix
elementary row operation 16
multiplication 15
sweep-out process 18
TYPE I operation 17
TYPE II operation 17
TYPE III operation 18
matrix games 357-360
transformation to a linear program 361-363
maximal-slack solution 390
method
complementary pivot 329-335
dual simplex see dual simplex method
M-Penalty 71-78, 111, 294
simplex see simplex method; simplex-based optimization methods
two-phase 87-94
minimization of the objective function 85-86
Minkowski-Farkas theorem 302-303
mixed structural constraint system 71
Mond, B. 347-353
M-Penalty method 71-78
basic feasible solutions 73, 76, 77, 78
dual solution, constructing 111
identity matrix $72-75$
mixed structural constraint system 71
parametric programming 294
slack variables $71,72,76$
surplus variables $71,72,76$
multiactivity joint-production model 171-180, 177f, $179 f$
see also transformation curve
composite output activity 171
increasing (real resource) opportunity cost 176
joint output linear production model 172
joint process transformation curve 172
joint product transformation curve 174
output technology matrix 171
parametric representation of the transformation curve 172
rate of product transformation 175
unit transformation curve 172, 173f
multiactivity production function 129-139, 136f
additive activity 130
composite activity 130
diminishing returns 135
factor substitution 130
joint process linear production model 130
process substitution 130
technical rate of substitution 134-135
multiactivity profit maximization model 143-146
multiplicative identity 15,20
mutual limitationality 126,127

n

Nanda, R. 162
Naylor, T. 123
n-dimensional Euclidean space 21
negative exponential 163
nonbasic variables $39,69,118$, 197, 212, 228
see also basic variables
improving basic feasible solutions 50,51, 54, 55
simplex method 44, 46, 47
simplex-based optimization methods 332, 340, 341
nondegeneracy assumption 44
nonnegativity conditions 35
nonreversible production activities 4
norm of X 21
normalizing constraints 387
Novaes, A. 345, 346
null vector 20, 27, 30, 98

0
objective function $2,3,6,8,37,43$
see also hyperplane; objective function coefficients
artificial 74
canonical forms 35
computational aspects 46,66 , 67, 69, 70
improving basic feasible solutions 48, 49, 51, 52, 55, 57, 60, 61, 65
deletion of a variable 223
dual solution, constructing 110
duality theorems 100, 102
interpretation 269 n
minimization $85-86$
optimal 61, 388
parameterizing $227,228-236,257$
primal 100, 106, 107, 223, 299, 307
quadratic programming 321
sensitivity analysis 198, 205
surrogate 87-88
two-phase method 88,89
objective function coefficients 63, 164, 195, 217
see also objective function
changing 196-199, 209
parametric programming 229, 231, 259, 260
theory of the firm 182, 188
operational level 124, 131
opportunity cost 175
optimal (imputed) costs of output quotas 10
optimal (imputed) value of all fixed resources 5,6
optimal (imputed) value of outputs produced 10
optimal accounting loss figures 5,10
optimal activity levels 4
optimal criterion $51,78,85,88,92$, $93,113,220$
dual solution 107, 108, 112
inconsistency and redundancy 80, 81, 84
parametric programming 228, 237, 245, 249, 255
sensitivity analysis 196-198
optimal dollar value of total cost 9
optimal dollar value of total profit 4
optimal objective function 61, 388
optimal output activity levels 9
optimal output configuration 9
optimal primary-factor/laborgrade mix $8-9$
optimal product mix 4,270
and factor learning $164-165$
optimal shadow price configuration 5
optimal simplex matrix see simplex matrix
optimal solutions $4,5,10$, 36-38, 40, 43, 67, 78, 202
see also feasible solutions; solutions
canonical forms 36
data envelopment analysis (DEA) 388, 390, 397, 399-402
dual problem $145,184,306$, 399, 401
duality theory $95,106,107$, 298, 313-315
dual simplex method 114, 121, 122
reformulation of primal and dual problems 302, 306
theorems 101, 104
existence and location 38-39
parametric programming 241, 246, 265, 271, 272
quadratic programming 322-324
simplex-based optimization methods 322, 326, 328, 337, 338, 346, 347, 349, 352, 355, 363
structural changes 217, 222, 223f
theory of the firm $141,145,184$
optimal utilization information 4 optimal value of inputs 5
optimality evaluators 48
optimality theorem 48,51
optimum product-mix model 164-165
output activities $6,7,183-185,187$, 190, 191
multiactivity joint-production model 171-174
output activity mix 189
output activity vector 165,174
output distance function (ODF) 377-378
output efficient subsets 375
output process ray 166
output substitution 172
output technology matrix 171
output transformation curves 174, 175, 176f, 184-186
outputs
see also inputs; output activities; output distance function (ODF); output efficient subsets; output process ray; output substitution; output technology matrix; output transformation curve
cost minimization 284-285
fixed level 131
joint output expansion path $167,169 f$
joint output linear production model 172
optimal (imputed) value of outputs produced 10
optimal imputed costs of output quotas 10
optimal output activity levels 9
optimal output configuration 9
output correspondence 375
output set 375
output-augmenting orientation 380
output-oriented DEA 377-378, 402-404
output-oriented multiplier problem 403
quotas 10, 167, 175, 187
slack variables 390-398
supply function for the output of an activity $257-262$
total imputed cost of firm's minimum output requirements 9
transformation surface 190, 191f
unit level 132, 354
overproduction 9, 182, 189

p

Panik, M. 123, 351
parallelogram law, vector addition 132
parametric analysis 11,227-256
see also parametric programming and theory of the firm
basis inverse, updating 256
critical values $228,236,237,242$, 246, 249, 250
parameterizing an activity vector 245-256
parameterizing the objective function 227, 228-236, 257
parameterizing the requirement vector $236-245,277$
primal feasibility 228,236 , 237, 245, 249, 250, 253
revised feasibility criterion 237
revised optimality condition 228 , 245, 249
parametric programming and theory of the firm 257-295
see also parametric analysis
average cost functions, determining 286-295
average productivity, determining 286-295
parametric programming and theory of the firm (cont'd) ceteris paribus assumption 257, 262, 269, 276, 290, 292 critical values 262, 267, 269, 277 demand function for a variable input 262-269 marginal (net) revenue productivity function for an input 269-276
marginal cost, determining 286-295
marginal cost function for an activity 276-284, 282t
marginal productivity, determining 286-295
minimizing cost of producing a given output 284-285
supply function for the output of an activity 257-262
parametric representation of the isoquant 131
parametric representation of the transformation curve 172
payoff function 357
perfect competition 1,6
generalized multiactivity profitmaximization model 158
multiactivity profit maximization model 143-144
single-activity profit maximization model 140, 142
perfect complementarity 124,166
perfect divisibility $1,6,124,166$
pivot operations 74,89
complementary pivot method 332, 334
computational aspects $52,56,70$
dual simplex 121, 157, 253, 271, 274
duality theory $114,118,120,122$
parametric programming 239, 253, 259, 260, 264, 265, 271, 274
pivotal term 52
plane of support theorem 30-31
polar support cone 300
postmultiplier matrix 15
post-optimality analysis 10,195
premultiplier matrix 15
primal feasibility 220,280
duality theory $114,120,122$
parametric analysis $228,236,237$, 245, 249, 250, 253
sensitivity analysis 200, 206-208, 209t, 210, 213, 214
primal objective function 100, 106, 107, 223, 299, 307
primal objective value 121, 325
primal optimality (dual feasibility)
see also sensitivity analysis
changes in technology 214, 215
changing a component of the coefficient matrix 203, 204, 206-208
changing a component of the requirements vector $200,202 \mathrm{t}$
changing objective function coefficient 196, 198, 199t
changing product and factor prices 212-213
changing resource requirements 213
parametric analysis $245,246,250$
primal problem 4
see also dual problem; duality theory
canonical form 95, 97
dual quadratic programs 325-327
dual simplex method 114,115
dual solution, constructing 107
duality theorems $100,102,103$, 306, 348, 349
generalized short-run fixedcoefficients profit-maximization model 159-160
Lagrangian saddle points 311
as maximization (minimization) problem 95
reformulation 297-310
structural constraints 96, 99
symmetric duals 95-97
unsymmetrical duals 98,99
primal simplex matrix 108,114 , 118, 201
primal simplex method 113
primary-factor, optimal 8-9
principal diagonal 14
problems
artificial 75-77
dual see dual problem
linear complementarity problem (LCP) 329
linear programming see linear programming problem
optimization 284, 286
output-oriented multiplier 403
parametric 258, 260-262, 265-267, 269, 270
primal see primal problem
primal maximum 297
profit maximization 149
reformulation of primal and dual problems 297-310
saddle point 297,312
symmetrical 284
process ray 124
process substitution 130, 172
product mix, optimal $4,164-165,270$
product transformation curve 177 f
joint product 167,174
"well-behaved" product 175
product transformation function, single-process 167-170, 169f
production activities $1,4,6,123$
production correspondence 386-387
production function
see also joint production; theory of the firm
joint production process 165-166
multiactivity $129-139,136 f$
single-process 125-127, 128f, 129
production indifference curves 146, 147
production possibility set 374, 386
production time 354
profit
see also profit indifference curves; profit maximization model; profit maximization problem
average 2,354
foregone 4,5
gross see gross profit
objective function 3
total see total profit
profit indifference curves 146-148, 151-156
profit maximization model
assumptions underlying 1-2
generalized multiactivity 157-161, 335, 353
multiactivity $143-146$
short-run fixedcoefficients 140-141
short-run linear technology 144
simplex-based optimization methods 335, 336
single-activity 139-142
profit maximization problem 149
progress elasticity 163
proportionality, direct $2,6-7$

q

quadratic forms 321, 363-371
classification 367-368
definite 367, 368-370
general structure 363-365
indefinite 367
necessary and sufficient conditions for the definiteness and semi-definiteness of 369-370
quadratic forms (cont'd) necessary conditions for definiteness and semidefiniteness of 368-369
semi-definite 367, 368-370
symmetric 366-367
theorems 368-371
quadratic programming 321-324
and activity analysis 335-338
dual programs 325-328
Karush-Kuhn-Tucker necessary and sufficient conditions 324, 327
primal programs 325
theorems 325-328
quasi-rents $338 n$

r

rank 22, 23
rate of product transformation 175
redundancy $39,78-85,89,126$
Reeves, G. 164, 165
reference set 388,400
requirements space 41,294
requirements vector 41
changing component of 200-202, 209-210
determination of marginal productivity, average productivity and marginal cost 286-290
marginal (net) revenue productivity function for an input 272-274
parameterizing 236-245, 277
resources
activity levels interpreted as individual resource levels 186-193
allocation process
dual simplex method 157
fractional objective, resource
allocation with 353-356
simplex method 155-156
average (real) resource cost function 168, 179f
changing resource requirements 213
fixed 5, 6
level of utilization $166,167,185$
marginal (real) resource cost function $168,179 \mathrm{f}$
optimal utilization information 4
optimal valuation of the firm's fixed resources 5
resource requirements vector 124,158
total (real) resource cost function 168, 169f, 179f
total imputed value of firm's fixed resources 5
returns to scale
BCC (Banker, Charnes and Cooper)
model 401-402
constant 373
data envelopment analysis
(DEA) 401-402
technology of the firm 123, 124
variable 373
revenue efficiency (RE) 383-384
robustness 10

S

Saaty, T. 326
saddle points
game theory 358, 359
generalized 359
Lagrangian see saddle points,
Lagrangian
saddle points, Lagrangian 297,
311-315
problem 297, 312
theorems 312-315
necessary and sufficient
condition 312-313
sufficient condition 313
Salkin, G. 347-353
scalar (inner) product 20

Schnaible, S. 347-353
Seiford, L.M. 373-374
sensitivity analysis 10,195-215
changes in technology 213-215
changing a component of an activity vector $210-215$
changing a component of the coefficient matrix 202-208, 209t
changing a component of the requirements vector 200-202, 209-210
changing product and factor prices 211-213
changing resource requirements 213
objective function coefficient, changing 196-199, 209
post-optimality analysis 10,195
primal feasibility 200, 206-208, 209t, 210, 213, 214
simplex matrix $195,196,198$, 201, 205, 213, 214
summary of effects 209-215
shadow activities 181
shadow inputs $180,181 \mathrm{n}, 182$
shadow prices 4
dual simplex method 157
optimal shadow price configuration 5
resource allocation with a fractional objective 355
single-activity profit maximization model 140
Shephard, R.W. 377-379
short run
firm operating in 2
generalized short-run fixedcoefficients profit-maximization model 159
short-run fixed-coefficients profitmaximization model 140-141
short-run linear technology profit-maximization model 144
short-run supply curve 142
simple activity 123,130
simplex 34
simplex matrix $50-57,331$
computational aspects $59-65,68-70$
duality theory $107-116,118$, 119, 121
optimal
computational aspects 61,63
duality theory $109,110,113,294$
parametric analysis 227, 230-234, 238-245, 247, 248, 251, 253, 255
parametric programming and theory of the firm 258, 259, 263, 270, 277, 278, 285, 286
redundancy 79
sensitivity analysis 195, 196, 198, 201, 205, 213, 214
simplex-based optimization methods 345, 346, 352, 353, 355
structural changes 217, 218, 221, 223-225
theory of the firm 149,188
parametric programming 227,263 , 270, 285, 286, 289, 294
activity vector 247, 248, 251, 253, 255
marginal cost function for an activity 277,278
parameterizing the objective function 229-235
parameterizing the requirement vector 238-245
supply function for the output of an activity 258, 259
primal $108,114,118,201$
sensitivity analysis 195, 196, 198, 201, 205, 213, 214
simplex-based optimization methods $342,343,345,346$, 352, 353, 355
simplex matrix (cont'd)
structural changes 217-225
theory of the firm 149, 188
variations of standard simplex routine 72, 74-76, 79-83, 88-93
simplex method 4,43-48
see also simplex-based optimization methods
dual see dual simplex method
dual solution, constructing 111
as an internal resource allocation process 155-156
nondegeneracy assumption 44
primal 113
summary 69-70
symmetric duals 95
variations of standard simplex routine 71-94
simplex-based optimization methods 321-371
see also simplex method
complementary pivot method 329-335
duality in linear fractional functional programming 347-353
game theory 356-363
linear fractional functional programming 338-346
matrix games 357-360
optimal solutions $322,326,328$, 337, 338, 346, 347, 349, 352, 355, 363
quadratic forms 363-371
quadratic programming 321-324
and activity analysis 335-338
dual quadratic programs 325-328
resource allocation with a fractional objective 353-356
simplex matrix 342,343 , $345,346,352,353,355$
simultaneous linear equation systems 22-26
consistency 22
determinate solutions 26
homogenous 26, 27
n linear equations in n unknowns 22
rank 22, 23
theorems 23-26
underdetermined 25
single-activity profit maximization model 139-142
single-process product transformation function 167-170, 169f
single-process production function 125-129, 128f
average productivity function 127
expansion path 126,127
limiting subset 129
marginal productivity function 127
slack variables $82,189,303,403$
see also basic variables;
complementary slackness
theorems; nonbasic variables; variables
dual solution 112
duality theorems 103, 105
input and output 390-398
M-Penalty method 71, 72, 76
nonnegative $36,45,67,71$, $109,149,160,211,285,342$
dual simplex method 115,116
duality theory 303, 306
improving basic feasible solutions 57,59, 62, 64
linear fractional functional programming 352, 353
structural changes 219, 222, 224
primal $103-105,112,145,306$, 319, 320
simplex-based optimization methods 320, 340, 353
structural changes 219, 221, 222, 224
theory of the firm $150,156,160$, 161, 183, 184
solutions
admissible 298
almost complementary basic 330-332
basic 28
canonical forms 36
complementary/complementary basic 329
dual, constructing 106-113
extreme point 39-40, 43
feasible see feasible solutions
graphical, to linear programming problem 37
maximal-slack 390
optimal see optimal solutions
and requirements spaces 41
saddle point 358
zero-slack 390
solutions space 41
spaces
n-dimensional Euclidean 21
requirements 41,294
solutions 41
vectors 20,28
spanning set, vectors 27
spherical δ-neighborhood 29
standard forms 36
static models 1,6
strategies, game theory 356
maximin 360
minimax 360
mixed $358,359,360,363$
strict separability 30
strong complementary slackness theorems 104-106, 109-111
strong disposability $374,375,376$
structural changes $11,217-226$
addition of a new structural constraint 219-222
addition of a new variable 217-219
deletion of a structural constraint 223-226
deletion of a variable 223
optimal solutions 217, 222, 223f
simplex matrix 217-225
structural constraints $4,5,9$
activity levels 150
addition of 219-222
artificial augmented structural constraint system 72
augmented structural constraint system $36,39,53$
primal 155-156
canonical forms 35
complementary pivot method 329
deletion of 223-226
dual 183, 184, 338
data envelopment analysis (DEA) 389
dual solution, constructing 107, 108
duality and complementary slackness theorems 320
duality theorems 104, 105
multiactivity profit maximization model 145
reformulation of primal and dual problems 308
simplex method 156
single-activity profit maximization model 141
symmetric duals 96
unsymmetrical duals 99
generalized multiactivity profitmaximization model 161
inconsistency and redundancy 75
inequality 97, 302
linear fractional functional programming 340,352
original system $78,79,85$
primal problem 96,99
reformulation of primal and dual problems 307
sensitivity analysis 202
single-activity profit maximization model 142

Index
submatrix $13,25,45$
substitution
factor 130
output 172
process 130, 172
technical rate of 134-135, 154
sum vector 121
supply function for the output of an activity 257-262
supporting hyperplane 30
surplus variables $86,306,320,353$
see also basic variables; nonbasic variables; slack variables; variables
duality theory $96,103,104,105$, 108, 112-114, 119
inconsistency and redundancy 79,82
M-Penalty method $71,72,76$
nonnegative $71,188,221,353$
structural changes 221-226
theory of the firm $141,145,150$, 157, 182, 184
activity levels 188, 189
surrogate linear programming problem 88, 90, 91, 93
surrogate objective function $87-88$
Swarup, K. 340, 342
Sweigart, J. 164, 165
symmetric duals
duality theory 95-97, 98
joint production and cost minimization 183
theory of the firm 141,144 , 148, 161

t

tangent support cone 298
technical efficiency (TE) 126, 132, 167, 379, 389
degree of input-oriented technical efficiency 380-381
degree of radial technical inefficiency 381,382
input-oriented measure 381
measuring 380-383
output-oriented measure 382
projection points 382
radial measures 380, 381, 382
technically efficient projection point 381
technical rate of substitution 134-135, 154
technological changes 213-215
technological independence 165
technological interdependence 6, 165
technology of the firm 123-125
technology set 374, 375
theorems
basic feasible solutions 40
complementary slackness see complementary slackness theorems
convex sets 30-34
duality 100-106, 315-319, 348-353
existence 101
fundamental, of linear programming 101, 102
game theory 359-360
Karush-Kuhn-Tucker 303-310
Karush-Kuhn-Tucker equivalence 313-315
minimization of the objective function 86
Minkowski-Farkas 302-303
necessary and sufficient condition 312-313
optimal solutions 38-39
optimality 48,51
plane of support 30-31
quadratic forms 368-371
quadratic programming 325-328
reformulation of primal and dual problems 299-310
saddle points, Lagrangian 312-315
simultaneous linear equation systems 23-26
sufficient condition 313
weak separation 30
theory of the firm 123-193
activity levels interpreted as individual product levels 148-155
activity levels interpreted as individual resource levels 186-193
cost indifference curves 184-186
dual simplex method 157
factor learning and optimum product-mix model 161-165
generalized multiactivity profitmaximization model 157-161
isoquants see isoquants
joint production
and cost minimization 180-184
multiactivity joint-production model 171-180, 177f, 179f
processes 165-166
multiactivity production function 129-139, 136f
multiactivity profit maximization model 143-146
optimal solutions $141,145,184$
and parametric programming see parametric programming and theory of the firm
profit indifference curves 146-148, 151-156
simplex method 155-156
single-activity profit maximization model 139-142
single-process product transformation function 167-170, 169f
single-process production function 125-127, 128f, 129
technology of the firm 123-125

Thompson, G.E. 123
Thrall, R.M. 373-374, 385-386, 398-402
total cost
imputed cost of all output requirements 10
imputed cost of firm's minimum output requirements 9
joint production and cost minimization 183
marginal cost function for an activity $276,281,283$
optimal dollar value of 9
total (real) resource cost function 168, 169f, 179f
total conversion cost 158
total variable cost (TVC) 263, 292-294
total factor productivity 387
total profit $2-6,211,295,338,354$
activity levels 149,150
optimal dollar value of 4
profit indifference curves 146-148
simplex method 155
single-activity profit maximization model 140
theory of the firm 140, 146-150, 155
total product function 127,170
transformation curves 167
joint process 172
joint product 167,174
output 174, 175, 176f, 184-186
parametric representation 172
unit 172, 173f, 174
"well-behaved" product 175
transposition, matrix 14
triangular inequality 21
triangular matrix 14
two-person games 356, 357
two-phase method 87-94
infeasibility form 88
input and output slack variables 390
two-phase method (cont'd) surrogate linear programming problem 88 surrogate objective function 87-88

u

unit column vector 21
unit isoquant $131,132,380$
unit level of activity 124
unit transformation curve 172, 173f, 174
unrestricted variables 86-87
unsymmetrical duals 97-100

V

Vandermullen, D. 123
variable returns to scale (VRS) 373
modeling 398-402
variables
addition of a new variable 217-219
artificial see artificial variables basic see basic variables deletion of 223 demand function for a variable input 262-269 legitimate $72,79,88$ nonbasic see nonbasic variables slack see slack variables surplus see surplus variables unrestricted 86-87
vector algebra 20-22 see also activity vector; vectors
vector space 20,28
vectors
activity see activity vector
algebra see vector algebra
artificial $73,75,78,79,81,82$, 91, 93
components 20
definition 20
nonbasic 202, 203, 256
null vector $20,27,30,98$
orthogonal 21
output activity 165,174
requirements see requirements vector
resource requirements 124, 158
spanning set 27
sum vector 121
unit column 21
Vernon, J. 123
vertex (of a cone) 30
vertex (of a convex set) 33

W

Wagner, H. 347-353
weak complementary slackness theorem 102-104, 106, 109-111, 116
weak disposability 376
weak separation theorem 30

y

Yuan, J. 347-353

Z

zero-slack solution 390
zero-sum game 356

