Index

a	annualized fixed cost 225
ab initio molecular dynamics (AIMD) 479, 480	Anton Paar DMA 4100, 419, 422
ab initio wavefunction methods 476-477	Anton Paar SVM3000 based on ASTMD-7042 419,
accelerated molecular dynamics (aMD) 486	423
acrylonitrilebutadiene-styrene resins 403	aqueous dew point temperature 341
additive technology 500	Aroforming process 384
adiabatic flow	aromatization of light alkanes. see light alkane
stagnation pressure 149	aromatization
two-phase gas-liquid flow 170–171	As-Low-As-Reasonably-Practicable (ALARP) 311
adiabatic model 134–137	ASPEN Plus
adiponitrile 403	flowsheet 268-273
adsorption isotherm 91–94	process 406, 445, 446
Advanced Research Project Agency–Energy	atmospheric distillation analysis 419-421
(ARPA-E) 471	atomsin-molecules (AIM) analysis 467
air contaminants 305	auto-ignition temperature (AIT) 326, 327
Air Products (AP-X TM) 242	auto thermal reforming (ATR) 271, 272, 439, 440
Algorithm for continuous/integer global optimization	
of nonlinear equations (ANTIGONE) 208	b
alternative fracturing fluids	balance of plant (BOF) 511, 523
broader economic and environmental benefits 47	Barnett shale 22
cost of 33, 41–42	Bernoulli's equation
CO ₂ vs. LPG 43–45	compressible pipeline flow 133
environmental and microeconomic impacts	flow between vessels 150
47–49	fluid mechanics 123–124
flowback and recycling 45-46	rationalization with 138-139
improved operations with 39–47	Berthelot-Lorentz combining rules 62
saltwater disposal sites, availability of 42-43	beta-type zeolites 393
seismic implications 46	bi-fuel/dual fuel 23
unlocking arid and water sensitive shales 46–47	billion standard cubic feet per day (BSCFD) 499
American Industrial Hygiene Association (AIHA)	binary interaction parameters (BIP) 60, 348–350
305	binary systems of NG components with water
American Society for Testing and Materials (ASTM)	347–351
D975 requirements 415	biofuels 505–507
D1655 specification 527, 528–529, 534, 535, 539,	blending/pooling problems 199
540	boiling liquid expanding vapor explosion (BLEVE)
D7566 specification 414, 527, 528	320, 326
amine sweetening 184	boiling water reactors (BWR) 289
Anderson-Schulz-Flory (ASF) distribution	bond critical points (BCP) 467
271–272, 440, 441	Brønsted acid sites (BAS) 383, 393–394

Natural Gas Processing from Midstream to Downstream, First Edition.
Edited by Nimir O. Elbashir, Mahmoud M. El-Halwagi, Ioannis G. Economou, and Kenneth R. Hall.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

bubble-point curve 59	CO ₂ emissions
Bukacek's method 342	and energy demand 16
butadiene	environmental assessment 266
petrochemical industry 403	reduction 60, 81, 379, 466
process description 404–405	CO ₂ injectivity 89, 101–106, 108
production capacity of 403	cold filter plugging point (CFPP) 435
steam cracking 403	Colebrook-White equation 127, 128, 165
techno-economic analysis 406–410	combined heat and power (CHP) 511–512
Butler Volmer reaction mechanism 515	combined reforming of methane (CRM) 440
Byogy renewables process 506–508	combining rule 1 (CR-1) 345
	complete active space self-consistent field (CASSCF)
<i>C</i>	478
capital investment 23, 37–38	compressible pipeline flow
carbon dioxide fracturing 25–26	adiabatic model 134–137
carbon number distribution 435, 436	application 139
carbon sequestration 34	Bernoulli approximation 133
catalytic steam reforming 509	choked flow 137–138
C9-C14 cut 437	control valve 159–160
Cetane Index Calculation 426–427	flow between vessels 150–151
Cetane number (CN) 427	isentropic flow 133–134
C7+ fraction characterization 65, 70	isothermal flow 132–133
Chabazite-type zeolite 393	meters 153–155
chemical conversion routes 10	polytropic flow 134
chemical production complex 230	rationalization with Bernoulli's equation
Chevron Phillips' Aromax process 384	138–139
chloroprene 403	stagnation pressure for 148
choked flow	compression performance model 207–208,
compressible pipeline flow 137–138	217–218
critical pressure ratio 157	compressor/pump stations 180
maximum flow rate 157–158	computational fluid dynamics (CFD) models 325
meters 156–158	computer-aided process engineering (CAPE) 76
problem 158–159	Co nanoparticles 466, 467
circulating fluidized bed reactor 441	contact angle 95–100
coalbed characteristics 89–91	continuity equation 121–122
coalbed methane (CBM) 4, 90	continuous catalyst regeneration (CCR) technology
coal composition 90	382
coal formation	Control of Industrial Major Accident Hazards
adsorption isotherm 91–94	(CIMAH) regulations 332
coal wettability 95–100	control valve
enhanced coalbed methane (ECBM) process 89–90, 95, 101–103, 106	compressible flow 159–160
gas storage in 91, 92	incompressible flow 159
pilot field tests 106–107	problem 161
properties and the operation 108	conventional diesel fuels 414
Young's modulus and Poisson's ratio 105	conventional FT reactors 441
6	conventional GTL plant setup 452
coal salinity 90 coal softening 105–106	CO ₂ removal 17, 267, 282
	CO ₂ sequestration 89
coal-to-liquid (CTL) technology 439 coal-water–air systems 95, 96	and capture 47
coal wettability 95–100	environmental improvements 34
coarse-grained molecular dynamics (CGMD)	hydraulic fracturing 45
486	process 95
100	P100000 70

Crane Handbook 139–142	energy loss 128
cricondenbar pressure (cricoP) 58, 59	energy needs 60
cricondentherm temperature (cricoT) 59	Energy-related Severe Accident Database (ENSAD)
criteria air pollutants (CAP) 222	306
critical point 59, 165, 176	enhanced coalbed methane (ECBM) process 89–90
critical pressure ratio 157	95, 101–103, 106
CSMGem 469	enthalpy 119
cubic equations of state (EoS) 59	environmental remediation
effect of characterization 65	emissions factors 32
Cubic-Plus-Association equation of state (CPA)	of GHG
344–346	bi-fuel/dual fuel 23
CYCLAR process 384–385, 395	environmental impact 24
	forms 23–24
d	single fuel 23
Darcy friction factor 124, 126, 127	improved operations with
decline stage, CBM 90	broader economic 38–39
degrees of freedom 171, 479, 486	capital investment analysis 37–38
demethanizer pressure 241, 251–254	and environmental benefits 38–39
density functional theory (DFT) 470, 478	water and seismic impacts
dewatering 17, 90	recycling produced water 26–27
dew-point curve (CBDE) 59	waterless fracturing 24–26
dew point temperatures 341–342	EPCON Process Innovator [®] 113, 129, 139, 143
diesel fractionation 420, 421	EPCON's CHEMPRO 152
di-ethylene glycol (DEG) 368	equation of state (EoS) 59
direct internal reforming (DIR) SOFC	process simulator 176
closed-loop validation results 523	thermodynamics of fluids 120–121
energy balance 514	equilibrium constant 96
power demand 517	ethane recovery 251–254
schematic diagram of 513	ethylene-to-butadiene portion 404, 405
discharge coefficient 153–156	Eulerian-Lagrangian spray model 331
dispersion models 324	
dissipative particle dynamics (DPD) 486	f
distributed energy production 511–512	Fanning friction factor 123
Domino effects 321	fault tree analysis (FTA) 314
Dow Fire & Explosion Index 231–232	first law of thermodynamics 117–118
down hole PVT 175–176	Fischer-Tropsch synthesis (FTS) 11, 263–264, 413,
drilling rigs 27	505
dry reforming of methane (DRM) process 440	ASF distribution model 440, 441
dual fuel systems	cobalt-based catalyst 440
conversion to 31–32	conventional FT reactors 441
environmental remediation 23	iron-based catalyst 440
dual mixed refrigerant (DMR) 242	iet fuel 527
Dukler and Taitel method 162–164	kinetics 480–481
dynamic viscosity 131	larger size and time scales molecular simulation
,	481–485
e	LTFT and HTFT process 441
Elliott combining rule (ECR) 345	physical and morphological properties of 466
Emergency Response and Guidelines (ERPGs) 305	SCF (<i>see</i> supercritical fluids (SCF) in FT synthesis)
end users 206, 217	supercritical fluids in 442
energy balance 132	vs. Synfuels product distribution 502, 503
energy gain 128	syngas conversion to hydrocarbons 478

fixed capital investment 226	gas fracturing 25, 44
fixed fluidized bed reactor 441	gas hydrates 467–470
flash point analysis 420, 425	gas storage, in coal formation 91, 92
flow between vessels	gas subcooled process (GSP) 236
compressible flow 150–151	gas sweetening 465
incompressible flow 150	gas-to-liquids (GTL) 11
flow coefficient 159	ASTM specifications 415
flow nozzle 155–156	best model tested 435–437
fluid flow	carbon number distribution 435, 436
compressible pipeline flow 132–139	composition-property prediction models
control valves 159–161	calibrating model method 428, 429
Crane Handbook 139–142	empirical model method 428–431
fundamental equations of fluid mechanics	model testing 428
121–126	regression analysis 427–428
incompressible pipeline flow 126–129	conventional diesel fuels 414–415
laminar flow 130–132	diesel specifications 415, 416
meters 152–159	diesel splitter downstream 436
notation 143–145	experimental study
piping networks 145–152	aim of 416–417
thermodynamics of fluids 116-121	atmospheric distillation analysis 419-421
two-phase gas-liquid flow 161–171	carbon distribution 419, 422
units of measure 114–116	Cetane Index Calculation 426–427
fluid mechanics	cloud and pour points analysis 420, 425–426
Bernoulli's equation 123–124	density analysis 419, 422–424
continuity equation 121–122	diesel fractionation 420, 421
mechanical energy balance 124-125	distillation 418–419
momentum balance 122-123	flash point analysis 420, 425
speed of sound 125–126	methodology 417
total energy balance 125	and modeling study 417
fluid velocity 146	standard testing methods 417, 418
fouling factor 128	viscosity analysis 419, 423–424
fracture propagation 21	FT process 413
fresh water	FTS 440–442
consumption 20	kinetics 480–481
management 29	larger size and time scales molecular simulation
friction factor 127	481–485
FTS. see Fischer-Tropsch synthesis (FTS)	and morphological properties 466
fuel prices 30	physical properties 466
fuel usage	GTL process 465–466
annual and costs 30	
transport vehicle 29	hydrate formers 465
by well 28–30	hydrocarbon combination 414
by well 20-30	KMC 480–481
	new specification formulation 435
g	process simulation 263–264, 271–272
gallium 387–388	products upgrading 442–444
GasCalc software 344, 357	quantum level investigations
gas chromatograph (GC) 419	methane conversion to syngas 477–478
gas condensate	methods and models 476–477
real gas condensate (RGC) mixtures 72–75	solvation effects 479–480
synthetic gas condensates 71–72	syngas conversion to hydrocarbons 478–479
gas expansion coefficient 154	standard error 435

syngas 439–440, 466	hydraulic fracturing 16–17
ULSD 414	completions phase 19, 23
gas to oil ratio (GOR) 175	drilling phase 19, 23
gas turbines 509	flowback/recovery of 33-34
Gaussian model 325	fresh water consumption 20
general AMBER force field (GAFF) 473	impacts 31
generalized gradient approximation (GGA) 478 GERG-water	operations after environmental remediation of 32–34
correlation 342	production phase 19, 23
EoS 343–344	quality of water produced 27
pure component parameters 347–348	and seismicity 18
Gibbs energy (G ^E) 64	shale gas operations 19–20
Gibbs ensemble MC simulations 470	transportation and disposal of produced water 20
Gibbs phase rule 171	and water impacts 19–20
global energy sources 2	hydrocarbon compounds 70
glycol dehydration 76, 189–190	hydrocarbon dew point (HCDP) 59
gPROMS [®] 517	hydrocarbon liquid dropout 59
grand canonical ensemble 481	
~	hydrocarbon mixture, PT phase diagram 58
grand canonical Monte Carlo (GCMC) simulations 347, 470, 474	hydrocarbon process simulation 173–174
gravimetric energy density 510, 511	hydrogenation reactor 504
greedy coverage algorithm 330	i
greenhouse gases (GHG) 198, 222, 509–510	
factors 31	ice formation 341
from fuel burn 30–31	ideal gas law 119
improved operations	incinerator/flare 189
broader economic 38–39	incipient wetness impregnation (IWI) 386
capital investment analysis 37–38	incompressible pipeline flow
and environmental benefits 38–39	application 129
shale gas wells 31–32	control valve 159 flow between vessels 150
grouped carbon number model 417, 432–436	flow between vessels 150 fouling factor 128
GTL fuels. see gas-to-liquids (GTL)	friction factor 127
GTE fucis. see gas-to-inquites (GTE)	K-factors for fittings 127
h	meters 152–153
Hartree-Fock (HF) formalism 477	
heat capacity 118–119	other head loss and gain terms 128–129 Reynolds number 126
heat exchange reforming 439, 440	stagnation pressure 146–147
heavy ends recovered (HER) 450	indirect internal reforming (IIR) 512
heavy oils 500	
high-temperature Fischer-Tropsch (HTFT) 289,	induced seismicity 21 initial boiling points (IBP) 418, 419
441	
high-volatile A bitumen (hvAb) 95	internal combustion engines (ICE) 509
high-volatile B bitumen (hvBb) 95	internal reforming solid oxide fuel cell (IR SOFC) 512
hockey stick 22	
homogeneous flow model 165–166	International Electro-Technical Commission (IEC) 316
Honeywell's UniSim [®] 76	intrinsic rate of potential energy 222
horizontal gas-liquid flow 162	isentropic exponent 119
Houdry process 403	isentropic flow
HYDRAFLASH software 372	compressible pipeline flow 133–134
hydrate formers 465	process 126
hydrate point temperature 342	rationalization with Bernoulli's equation 138

isentropic flow (contd.)	thermodynamics and history 381–383
stagnation pressure 148–149	light GTL diesel cut 423, 437
two-phase gas-liquid flow 168–170	limiting pore diameter (LPD) 473-474
isoquality lines 58, 59	linear alkyl benzene (LAB) 422, 437
isothermal flow	Linear Combination Vidal Michelsen (LCVM) 60
compressible pipeline flow 132–133	linear programming (LP) model
rationalization with Bernoulli's equation 138	case study 279–280
stagnation pressure 147–148	formulation 278
two-phase gas-liquid flow 167–168	steady-state simulation 278
	LINGO [®] 221, 229, 277, 279, 287, 295, 418, 428,
j	429, 431, 433
jet fuel 503, 527. see also synthetic jet fuel	liquefaction process analysis 244
Joule's constant 114	liquefied petroleum gas fracturing 25
Joule–Thomson (J–T) effect 237, 241–242	liquid-liquid equilibrium (LLE) 483
	liquid-phase hydrogenation 501
k	LNG process simulation 266–271
Kaiser Wilhelm Institute for Coal Research (KWI)	lower flammability limit (LFL) 326
440	low-temperature Fischer-Tropsch (LTFT) 289, 441
Kalman filter 520	466
kerogens porosity 472–476	
K-factors for fittings 127, 150	m
Kihara potential 346, 373, 374	Mach number 135, 136, 138, 147, 168
kinematic viscosity 415, 416, 418, 419, 423, 424,	Markov method 314
431, 435, 436	Master equation (ME) 480
kinetic Monte Carlo (KMC) methods 471, 480–481	Mathias-Copeman parameters 64, 356
	MATLAB 521
Languagia describe escribert 240	maximum covering location problem (MCLP) 330
Langmuir adsorption constant 346	331 maximum flow rate 157–158
Langmuir Hinshelwood kinetics 515	maximum water precipitation temperature 342
Langmuir pressure 103	mean time between failure (MTBF)/mean time
Langmuir-type mathematical expressions 347	between failure (MTBF) 313
Layer of Protection Analysis (LOPA) 311	mechanical energy balance 124–125
Le Chatelier equation 326	membrane distillation 27
Lennard-Jones (LJ) dummy particle 472, 474	meters
Lewis acid sites (LAS) 393–394	choked flow through 156–158
light alkane aromatization	compressible flow through 153–155
acidity/Si/Al ratio 393–394 metals role	flow nozzle 155–156
	incompressible flow through 152–153
bifunctional mechanism 385, 386 Ga/H-ZSM-5 387–388	orifice meter 155
Mo/ZSM-5 386	problem 158–159
promoters 391–392	Venturi tube 156
Pt/H-ZSM-5 387	methane 511
Re/H-ZSM-5 388–389	methane adsorption isotherm 92
Zn/H-ZSM-5 389–391	methanol/ethylene glycol injection 180–182
natural gas composition 380–381	methanol process simulation 272–274
pore structure	methanol synthesis reactors 289
ZSM-5 392	MFI zeolite 392
ZSM-8 393	M-2 forming process 384
ZSM-11 393	midstream sector
ZSM-12 393	amine sweetening 184
shale gas revolution 379	glycol dehydration 189–190

incinerator/flare 189	bi-fuel/dual fuel 23
NGL fractionation 192, 194	chain 2–4
NGL recovery 190–193	composition 4, 235, 380–381
processing 464	conventional/unconventional reservoirs 463
sour water stripper (SWS) 187–189	conversion
sulfur recovery unit (SRU) 184–186	advantages and constraints in 12
tail gas treatment unit (TGTU) 186–187	to chemicals and fuels 9-13
million metric ton per annum (MMTA) 221, 229	demand of 2
minimal cut-sets 314	electricity generation 509, 510
minimum source distance problem (MSDP) 330	environmental impact 24
mixed fluid cascade (MFC) 242	expansion 11
mixed-integer nonlinear programming (MINLP)	forms 23–24
197, 221	GTL technology
case study 286–288, 293–296	FTS kinetics 480–481
formulation 285–286, 290–293	KMC 480-481
problem statement and solution strategy	quantum level investigations 476-480
284–285	LNG export 8–9
process descriptions 282–284	midstream processing of 463, 464
mixed refrigerant cycles (MRC) 242	molecular simulation techniques 463, 465
mixing stations 205–206, 216–217	pipeline export 7–8
molecular dynamics (MD) simulations 465	pipeline transportation 467–470
molecular mechanics (MM) 479	porous media
molecular simulations 465	ab initio DFT 471
Moller–Plesset second order perturbation theory	automotive vehicles 470
(MP2) 477	catalytic processes 470
molybdenum 386	kerogens porosity 472–476
momentum balance 122–123	molecular modeling 470
monetization routes	polymeric membrane technology 471
advantages and disadvantages for 6-9	TST 471
chain with different routes 10	real natural gas (RG) 67–70
export 7–9	role of 6
large industries and power plants 4–6	single fuel 23
residential 7	SOFC (see solid oxide fuel cell (SOFC))
small/medium industries and commercial users	synthetic natural gases (SNGs) 65–67
6–7	transport and conversion 463, 464
Monte Carlo (MC) simulation technique 465	transportation fuels 465
mpMPC. see multiparametric model predictive	URR 509
control (mpMPC)	value-added chemicals 465
MSCFD reactor 504	natural gas liquids (NGL)
MULTIFLASH software 361	energy flow 251
multifunctional BaZrO ₃ membrane 395	ethane extraction 236
multifunctional membrane reactor model 395	fractionation
multiparametric model predictive control (mpMPC)	midstream sector 192, 194
controller design 520–522	process 235
linear model approximation 519–520	simulation 195
multiparametric quadratic programming problem	methodology framework 237–238
(mp-QP) 521	optimization
multitubular fixed bed reactor 441	framework 238
	model development 245–249
n	results 249–254
naphtha 403, 404	propane refrigeration system
natural gas	liquefaction process analysis 244
<i>3</i> ····	1 · · · · · · · · · · · · · · · · · · ·

natural gas liquids (NGL) (contd.)	0
simulation results 244–245	offshore process simulation 75–81
recovery	olefinic C ₄ streams 384
compression 244	oligomerization unit 503, 504
demethanizer 241	optimization, for NGL
GSP process for 239	compressor and condenser 249–251
Joule-Thomson (J-T) effect 241-242	demethanizer pressure and ethane recovery
midstream sector 190–193	251–254
process simulation 195	energy balance constraints 247-248
refrigeration 242–244	heat transfer constraints 247
turboexpander 242	objective function 246
self-refrigeration cycle 237	pressure ratio constraints 247
natural gas reformer 439-440	propane cycle 249
natural gas reforming 512	optimization model 202–208
natural gas to acetylene (GTA). see Synfuels process	orifice meter 155
natural gas to ethylene (GTE). see Synfuels process	overall risk ratings (ORR) 318
natural gas to liquid fuels (GTL). see Synfuels process	oxidative coupling of methane 226
net positive suction head (NPHS) 150	1 0
net present value (NPV) 34–35	p
network flow 145-146	parallel mixed refrigerant (PMR) 242
network systems	PARametric Optimization and Control (PAROC)
blending/pooling problems 199	framework
computation study 208-209	controller design 520-522
gas quality in 202–204	linear model approximation 519–520
generic 201	partial least squares (PLS) 531–533
inflow qualities 204	partial oxidation (POX) 439–440
optimization model 202-208	particulate matter (PM) emissions 24
processing and production	PC-SAFT EoS 61–63
processing units 282–284	peak gas stage, CBM 90
proven reserves 261	peak oil 500
simulation	Peng–Robinson (PR) EoS 59–61, 343
problem statement 265	pentasil-type zeolite 392
steady state process 266–274	Perdew-Wang exchange 478
superstructure representation 281, 284,	perfect gas properties 119–120
289–290	perturbed-chain SAFT (PC-SAFT) 61–62
supply chain management 260-261	Petrotest ADU4+ automatic distillation unit 419
sustainability assessment of 296-300	phase envelope 58, 179, 181
utilization	pilot field tests 106–107
GTL process 263–264	pipeline modeling 178–180
LNG process 263	pipeline performance model 207
methanol process 264–265	pipeline transportation 467–470
results 209–212	piping networks
superstructure in Ontario 203	application 151–152
supply chains 200–202	flow between vessels 150–151
Newton-Raphson algorithm 127	network flow 145–146
nitrogen separation/rejection 288	stagnation pressure 146–149
nonlinear iterative partial least squares (NIPALS)	system equations 151
algorithm 531, 532	total pressure 146–149
nonlinear programming (NLP) model 199	pitot tube 147
non-random two-liquid Redlich-Kwong (NRTL-RK)	platinum(Pt)-based catalysts 387
property method 445	Poiseuille flow 130

Poisson's ratio 105	liquefaction process analysis 244
polybutadiene 403	simulation results 244-245
polymer electrolyte membrane (PEMFC) fuel cell	
511	r
polymeric membrane technology 471	Rackett model 445
polytropic flow 134, 138	radial distribution function (RDF) analysis
potential of mean force (PMF) landscapes 480	472, 484
pressure drop 151, 160	Ras Laffan industrial complex in Qatar 499
characteristics 165	real gas condensate (RGC) mixtures
entrance effect 164	assigning UNIFAC structure 75
surface tension errors 164	dew point predictions 75
pressure-enthalpy flash 171	molar compositions of 74
pressure swing adsorption (PSA) 289	plus fraction characterization of 72–75
pressure-temperature (PT) phase diagram 58	splitting and lumping 73–74
pressure-volume-temperature (PVT) 175	real natural gas (RG)
principal component analysis (PCA) 529–531	compositions of 69
principal components regression (PCR) 531	natural gas dew points 67–70
process safety	ReaxFF potential 481
effective mitigation system 329–332	recovery, NGL
equipment and plant reliability 312-315	compression 244
facility siting and layout optimization	demethanizer 241
advances in 318–322	GSP process for 239
lessons learned from past incidents	Joule–Thomson (J–T) effect 241–242
322–323	midstream sector 190–193
separation distances 318	process simulation 195
fire and explosion 326–329	refrigeration 242–244
incident history	turboexpander 242
Cleveland, Ohio 1944, 306–308	recycling produced water
Kaohsiung, Taiwan 2014, 309	fracturing with produced water 26–27
San Bruno, California 2010, 308	treating wastewater 27
Skikda, Algeria 2004, 308	refrigeration system
incidents and evolution 334	liquefaction process analysis 244
methods 309-311	simulation results 244–245
regulatory program and management systems	Reid vapor pressure (RVP) 76, 282
332–335	reserves-to-production (R/P) rates 2
relief system design 323–324	residue recycle (RR) 237
toxic and heavy gas dispersion 324–325	retrograde region 59
US PSM and RMP regulations 335	reverse MC (RMC) 472
process simulator	Revised Perdew-Burke-Ernzerhof functional (RPBE)
defined 174	478
hydrocarbon process simulation 173-174	Reynolds number 126, 155, 165
midstream sector 183–192	Rhenium 388–389
upstream sector 174–183	Runge-Kutta-Gill method 171
produced water/wastewater	
fracturing with 26–27	S
recycling (see recycling produced water)	safety instrumented functions (SIF) 311
transportation and disposal of 20	safety relief valve 323
ProMax model tracking 177–178, 184, 188–190	saltwater disposal sites 42–43
propane refrigeration system	secondary vapor cloud explosions 326
T-H diagram of 249	second law of thermodynamics 118, 137
thermodynamic analysis	second order perturbation theory 62

seismicity	greenhouse gas emissions from fuel burn
and hydraulic fracturing 18	30-31
impacts 17, 24–27	hydraulic fracturing impacts 31
induced 21	net present value (NPV) 34–35
and seismic implications 21–22, 46	waterless fracturing 32–34
seismic response 21	well lifecycle analysis 17-18
self-refrigeration cycle 237	Shell Middle Distillate Synthesis (SMDS) 437
separation distances 315, 318, 319	Si/Al ratio zeolites 393–394
shale gas extraction 17	simplified Parish and Prausnitz approach (PP) 346
shale gas monetization supply chains	347, 351
case study	Sinopec Luoyang's GTA technology 384
base case environmental considerations	SLE. see solid-liquid equilibrium (SLE)
230–231	slickwater fracturing 20, 25, 31, 42
base case product prices 225	slurry bubble reactor 441
base case safety considerations 231–232	Soave equations 347
base case solution 226–227	Soave-Redlich-Kwong (SRK) EoS 59-60, 121, 345,
conversion technologies 224-225	352
environmental and safety metrics 222-223	SOFC. see solid oxide fuel cell (SOFC)
feedstock 224	solid-liquid equilibrium (SLE) 346, 361, 362, 366
objectives of 224	solid oxide fuel cell (SOFC)
plant costs and capacity limits 225-226	BOF 511
problem statement 221–222	closed-loop validation and results 523
reduced methanol price case results 227-229	cost-contributing factors 511, 512
reduced urea price case results 229-230	DIR 512–513
methodology 220-221	mathematical model
optimization formulation 220	electrochemistry 516-517
superstructure representation 220, 221	energy balance 514-515
shale gas operations	hypothetical model 514
completions phase 19	kinetics 515
drilling phase 19	mass balance 514
fuel usage 21	mpMPC 519-520
hydraulic fracturing 19–20	natural gas reforming 512
seismicity and seismic implications 21-22	PEMFC 511
and water impacts 19–20	simulation 517–519
shale gas revolution 379	sour gas 282
shale gas wells	sour water stripper (SWS) 187–189
Barnett shale 22	speed of sound 125-126
drilling and production processes 17	stagnation pressure
energy and environmental equation 15-17	adiabatic flow 149
environmental impacts 17–18	incompressible 146-147
environmental remediation	isentropic flow 148-149
of greenhouse gas emissions 31–32	isothermal flow 147–148
of hydraulic fracturing 32–34	static pressure 147–148
natural gas as a fuel 22–27	statistical associating fluid theory (SAFT) 61-62
global energy demand 16	statistical associating fluid theory for fluids
theoretical calculations	interacting through potentials of variable
annual fuel usage and costs 30	range (SAFT-VR) 368
conversion to dual fuel systems 31–32	steam cracking process 403
environmental improvements 32, 34	steam methane reforming (SMR) 439
and expected capital outlay 34–35	steam reforming (SR) 512
fuel usage by well 28–30	stochastic model

compression performance model 207–208,	PLS for linear regression model 531–533
217–218	SVM for nonlinear regression 533–534
for end users 206, 217	optimal blend selection using multivariate statistics
for mixing stations 205–206, 216–217	composition property correlation 537–539
pipeline performance model 207	hydrocarbon component 535–536
pressure model 206	reliability prediction using score plot 538–540
for sources 204–205, 216	optimal blend selection using ternary diagram
stochastic programming approach 197, 330	534
styrene-butadiene latex 403	PCA 529–531
styrene-butadiene rubber (SBR) 403	SPK 527–528
subtractive technology 500	synthetic natural gases (SNGs)
	compositions of 67
sulfur recovery unit (SRU) 184–186	
supercritical fluids (SCF) in FT synthesis	natural gas dew points 65–67
alternate separation design 450, 451–452	synthetic paraffinic kerosene (SPK) 527–528
heavy components first separation 448–451	system equations, in piping networks 151
process design approach 445–447	
product cuts 444–445	t
products upgrading 442–444	tail gas treatment unit (TGTU) 186–187
reactor conditions 445, 446	tanks 182–183
three-phase separator 455	temperature climate grades of diesel fuel 435
vapor and liquid components separation	temperature effects, in two-phase gas-liquid flow
455–460	166–167
water first separation 452-456	temperature programmed desorption (TPD) 484
support vector machine (SVM) 533-534	ternary systems of NG components with water
sustainability assessment 296–300	351-356
sweet gas 263, 282	thermodynamic analysis, propane refrigeration
Synfuels' cracking of methane to ethylene 404	system 244–245
Synfuels process	thermodynamic models
additive technology 500	CPA 344–346
arrangement for 501, 502	GERG-water
biofuels 505–507	EoS 343–344
definition 500	pure component parameters 347–348
vs. Fisher-Tropsch 502, 503	NG components with water
location 505	and alcohols 360–367
pilot plant 503–505	binary systems of 347–351
	and glycols 367–372
syngas 219	systems with ≥ 4 355–360
conversion to hydrocarbons 478–479	•
gas-to-liquids (GTL) 466	ternary systems of 351–356
generation 439–440	PC-SAFT EoS 61–63
synthetic gas condensates (SGC)	Peng-Robinson EoS 61
dew point predictions for 72	physical properties 57
gas condensate 71–72	software packages 343
molar compositions of 71	UMR-PRU model 63–64
synthetic jet fuel	vdW-P hydrate model 346–347
ANN 528	thermodynamics of fluids
experimental verification of model predicted data	equation of state 120–121
540-542	first law of thermodynamics 117–118
Fischer-Tropsch synthesis process 527	heat capacity 118-119
hydrocarbon groups 528	perfect gas properties 119–120
multivariate regression model, blend property	second law of thermodynamics 118, 137
correlation	three-phase separator (3-PHASE2) 455

threshold limiting value (TLV) 318	<i>v</i>
total dissolved solids (TDS) 20	Valderrama modification of the Patel and Teja
total energy balance 125	equation of state (VPT) 348, 373
total organic content (TOC) 472	van der Waals family of EoSs 59
total pressure 146–149	van der Waals one fluid (vdW1f) 60, 62
transferable potentials for phase equilibria	van der Waals-Platteeuw (vdW-P) hydrate model
(TraPPE-UA) 479	346-347
transition state theory (TST) 471	van't Hoff-type temperature dependence 347
true vapor pressure (TVP) 76	vapor cloud explosion (VCE) 320
turboexpander 237, 242	vapor-hydrate equilibrium (VHE) 349
two-phase gas-liquid flow	vapor-ice equilibrium (VIE) 345, 349, 353
adiabatic flow 170–171	vapor-liquid equilibrium (VLE) 349
Dukler and Taitel method 162-164	vapor-liquid-liquid equilibrium (VLLE) 365, 366,
effect of change 167	368
homogeneous flow model 165–166	vena contracta 155
isentropic flow 168–170	Venturi tube 156
isothermal flow 167–168	volatile organic compound (VOC) emissions 176
pressure drop in 164–165	
temperature effects 166–167	W
-	wastewater disposal wells 22
u	wastewater injection 21
ultimately recoverable resources (URR)	wastewater management 29
509	wastewater treating 27
ultra low sulfur diesel (ULSD) 414	water and seismic impacts
unconventional gas 17	recycling produced water 26–27
unity bond index quadratic exponential potential	waterless fracturing 24–26
(UBI-QEP) method 480	water condensation 341
universal force field (UFF) 479	water dew point temperature 341
universal gas constant 119	waterless fracturing
universal mixing rules (UMR) 64	assumptions 33
Universal Mixing Rules—Peng Robinson UNIFAC	carbon dioxide fracturing 25-26
(UMR-PRU) 60-64	environmental remediation options 32–34
UOP's methane conversion to butadiene 404	impact of 40–41
upper flammability limit (UFL) 326	liquefied petroleum gas fracturing 25
upstream sector	water and seismic impacts 24–26
compressor/pump stations 180	well lifecycle analysis 17–18
down hole PVT 175–176	well site model 176–178
methanol/ethylene glycol injection 180–182	Weymouth formula 142
oil and gas processes 174	
pipeline modeling 178–180	y
tanks 182–183	Young's modulus 105
well site model 176–178	<i>3</i>
U.S. Chemical Safety and Hazard Investigation Board	Z
323	Z forming process 384
U.S. Department of Energy 509	zinc 389–391
U.S. Energy Information Administration	Zn-doped SSZ-13 393
509	Zn-doped ZSM-5 catalysts 396
U.S. National Transportation Safety Board (NTSB) 308	ZSM-5 zeolite 383–385