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CHAPTER 1

WHY SHOULD WE CARE ABOUT
NONLINEARITY?

Linear processes and linear models dominate research and applications of time
series analysis. They are often adequate in making statistical inference in practice.
Why should we care about nonlinearity then? This is the first question that came
to our minds when we thought about writing this book. After all, linear models are
easier to use and can provide good approximations in many applications. Empir-
ical time series, on the other hand, are likely to be nonlinear. As such, nonlinear
models can certainly make significant contributions, at least in some applications.
The goal of this book is to introduce some nonlinear time series models, to discuss
situations under which nonlinear models can make contributions, to demonstrate
the value and power of nonlinear time series analysis, and to explore the nonlin-
ear world. In many applications, the observed time series are indirect (possibly
multidimensional) observations of an unobservable underlying dynamic process
that is nonlinear. In this book we also discuss approaches of using nonlinear and
non-Gaussian state space models for analyzing such data.
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2 1. WHY SHOULD WE CARE ABOUT NONLINEARITY?

To achieve our objectives, we focus on certain classes of nonlinear time series
models that, in our view, are widely applicable and easy to understand. It is not
our intention to cover all nonlinear models available in the literature. Readers are
referred to Tong (1990), Fan and Yao (2003), Douc et al. (2014), and De Gooijer
(2017) for other nonlinear time series models. The book, thus, shows our prefer-
ence in exploring the nonlinear world. Efforts are made throughout the book to
keep applications in mind so that real examples are used whenever possible. We
also provide the theory and justifications for the methods and models considered
in the book so that readers can have a comprehensive treatment of nonlinear time
series analysis. As always, we start with simple models and gradually move toward
more complicated ones.

1.1 SOME BASIC CONCEPTS

A scalar process xt is a discrete-time time series if xt is a random variable and the
time index t is countable. Typically, we assume the time index t is equally spaced
and denote the series by {xt}. In applications, we consider mainly the case of xt
with t ≥ 1. An observed series (also denoted by xt for simplicity) is a realization
of the underlying stochastic process.

A time series xt is strictly stationary if its distribution is time invariant. Math-
ematically speaking, xt is strictly stationary if for any arbitrary time indices
{t1,… , tm}, where m > 0, and any fixed integer k such that the joint distribution
function of (xt1

,… , xtm
) is the same as that of (xt1+k,… , xtm+k). In other words,

the shift of k time units does not affect the joint distribution of the series. A time
series xt is weakly stationary if the first two moments of xt exist and are time
invariant. In statistical terms, this means E(xt) = 𝜇 and Cov(xt, xt+𝓁) = 𝛾𝓁 , where
E is the expectation, Cov denotes covariance, 𝜇 is a constant, and 𝛾𝓁 is a function
of 𝓁. Here both 𝜇 and 𝛾𝓁 are independent of the time index t, and 𝛾𝓁 is called
the lag-𝓁 autocovariance function of xt. A sequence of independent and identi-
cally distributed (iid) random variates is strictly stationary. A martingale differ-
ence sequence xt satisfying E(xt ∣ xt−1, xt−2,…) = 0 and Var(xt ∣ xt−1, xt−2,…) =
𝜎2 > 0 is weakly stationary. A weakly stationary sequence is also referred to as a
covariance-stationary time series. An iid sequence of Cauchy random variables is
strictly stationary, but not weakly stationary, because there exist no moments. Let
xt = 𝜎t𝜖t, where 𝜖t ∼𝑖𝑖d N(0, 1) and 𝜎2

t = 0.1 + 0.2x2
t−1. Then xt is weakly station-

ary, but not strictly stationary.
Time series analysis is used to explore the dynamic dependence of the series.

For a weakly stationary series xt, a widely used measure of serial dependence
between xt and xt−𝓁 is the lag-𝓁 autocorrelation function (ACF) defined by

𝜌𝓁 =
Cov(xt, xt−𝓁)

Var(xt)
≡
𝛾𝓁
𝛾0

, (1.1)
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where 𝓁 is an integer. It is easily seen that 𝜌0 = 1 and 𝜌𝓁 = 𝜌−𝓁 so that we focus
on 𝜌𝓁 for 𝓁 > 0. The ACF defined in Equation (1.1) is based on the Pearson’s
correlation coefficient. In some applications we may employ the autocorrelation
function using the concept of Spearman’s rank correlation coefficient.

1.2 LINEAR TIME SERIES

A scalar process xt is a linear time series if it can be written as

xt = 𝜇 +
∞∑

𝑖=−∞
𝜓𝑖at−𝑖, (1.2)

where 𝜇 and 𝜓𝑖 are real numbers with 𝜓0 = 1,
∑∞
𝑖=−∞ |𝜓𝑖| <∞, and {at} is a

sequence of iid random variables with mean zero and a well-defined density func-
tion. In practice, we focus on the one-sided linear time series

xt = 𝜇 +
∞∑
𝑖=0

𝜓𝑖at−𝑖, (1.3)

where𝜓0 = 1 and
∑∞
𝑖=0 |𝜓𝑖| < ∞. The linear time series in Equation (1.3) is called

a causal time series. In Equation (1.2), if 𝜓j ≠ 0 for some j < 0, then xt becomes a
non-causal time series. The linear time series in Equation (1.3) is weakly station-
ary if we further assume that Var(at) = 𝜎2

a < ∞. In this case, we have E(xt) = 𝜇,
Var(xt) = 𝜎2

a

∑∞
𝑖=0 𝜓

2
𝑖

, and 𝛾𝓁 = 𝜎2
a

∑∞
𝑖=0 𝜓𝑖𝜓𝑖+𝓁 .

The well-known autoregressive moving-average (ARMA) models of Box and
Jenkins (see Box et al., 2015) are (causal) linear time series. Any deviation from
the linear process in Equation (1.3) results in a nonlinear time series. Therefore,
the nonlinear world is huge and certain restrictions are needed in our exploration.
Imposing different restrictions leads to different approaches in tackling the non-
linear world which, in turn, results in emphasizing different classes of nonlin-
ear models. This book is no exception. We start with some real examples that
exhibit clearly some nonlinear characteristics and employ simple nonlinear mod-
els to illustrate the advantages of studying nonlinearity.

1.3 EXAMPLES OF NONLINEAR TIME SERIES

To motivate, we analyze some real-world time series for which nonlinear models
can make a contribution.
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Example 1.1 Consider the US quarterly civilian unemployment rates from
1948.I to 2015.II for 270 observations. The quarterly rate is obtained by averaging
the monthly rates, which were obtained from the Federal Reserve Economic Data
(FRED) of the Federal Reserve Bank of St. Louis and were seasonally adjusted.
Figure 1.1 shows the time plot of the quarterly unemployment rates. From the
plot, it is seen that (a) the unemployment rate seems to be increasing over time,
(b) the unemployment rate exhibits a cyclical pattern reflecting the business cycles
of the US economy, and (c) more importantly, the rate rises quickly and decays
slowly over a business cycle. As usual in time series analysis, the increasing trend
can be handled by differencing. Let rt be the quarterly unemployment rate and
xt = rt − rt−1 be the change series of rt. Figure 1.2 shows the time plot of xt. As
expected, the mean of xt appears to be stable over time. However, the asymmet-
ric pattern in rise and decay of the unemployment rates in a business cycle shows
that the rate is not time-reversible, which in turn suggests that the unemployment
rates are nonlinear. Indeed, several nonlinear tests discussed later confirm that xt
is indeed nonlinear.

If a linear autoregressive (AR) model is used, the Akaike information criterion
(AIC) of Akaike (1974) selects an AR(12) model for xt. Several coefficients of the
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Figure 1.1 Time plot of US quarterly civilian unemployment rates, seasonally adjusted,
from 1948.I to 2015.II.
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Figure 1.2 Time plot of the changes in US quarterly civilian unemployment rates, sea-
sonally adjusted, from 1948.I to 2015.II.

fitted AR(12) model are not statistically significant so that the model is refined.
This leads to a simplified AR(12) model as

xt = 0.68xt−1 − 0.26xt−4 + 0.18xt−6 − 0.33xt−8 + 0.19xt−9 − 0.17xt−12 + at, (1.4)

where the variance of at is 𝜎2
a = 0.073 and all coefficient estimates are statistically

significant at the usual 5% level. Figure 1.3 shows the results of model checking,
which consists of the time plot of standardized residuals, sample autocorrelation
function (ACF), and the p values of the Ljung–Box statistics Q(m) of the residuals.
These p values do not adjust the degrees of freedom for the fitted parameters, but
they are sufficient in indicating that the fitted AR(12) model in Equation (1.4)
is adequate.

On the other hand, one can use the self-exciting threshold autoregressive (TAR)
models of Tong (1978, 1990) and Tong and Lim (1980) to describe the nonlinear
characteristics of the data. The TAR model is one of the commonly used nonlinear
time series models to be discussed in Chapter 2. Using the TSA package of R (R
Development Core Team, 2015), we obtain the following two-regime TAR model

xt = 0.47xt−1 + 0.15xt−2 − 0.02xt−3 − 0.17xt−4 + a1t, if xt−1 ≤ 𝛿 (1.5)

= 0.85xt−1 − 0.08xt−2 − 0.22xt−3 − 0.29xt−4 + 0.23xt−5 + 0.36xt−6 − 0.14xt−7

− 0.51xt−8 + 0.37xt−9 + 0.17xt−10 − 0.23xt−11 − 0.21xt−12 + a2t, if xt−1 > 𝛿,
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Figure 1.3 Model checking of the fitted AR(12) model of Equation (1.4) for the change
series of US quarterly unemployment rates from 1948.II to 2015.II: (a) standardized resid-
uals, (b) ACF of residuals, and (c) p values for Ljung–Box statistics.

where the threshold 𝛿 = −0.066666 and the standard errors of a1t and a2t are 0.181
and 0.309, respectively. Some of the coefficient estimates are not statistically sig-
nificant at the 5% level, but, for simplicity, we do not seek any further refinement of
the model. Model checking shows that the fitted TAR model is adequate. Figure 1.4
shows the time plot of standardized residuals of model (1.5) and the sample auto-
correlations of the standardized residuals. The Ljung–Box statistics of the stan-
dardized residuals show Q(12) = 6.91 (0.86) and Q(24) = 18.28(0.79), where the
number in parentheses denotes the asymptotic p value. In this particular instance,
xt−1 is the threshold variable and the fitted model shows that when the quarterly
unemployment rate decreased by −0.07% or more, the dynamic dependence of the
unemployment rates appears to be simpler than when the rate was increasing or
changed mildly. In other words, the model implies that the dynamic dependence
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Figure 1.4 Model checking of the fitted TAR(4,12) model of Equation (1.5) for the
change series of US quarterly unemployment rates from 1948.II to 2015.II. (a) The time
plot of standardized residuals of model (1.5) and (b) the sample autocorrelations of the
standardized residuals.

of the US quarterly unemployment rates depends on the status of the US economy.
When the economy is improving, i.e. the unemployment rate decreased substan-
tially, the unemployment rate dynamic dependence became relatively simple.

To compare the AR and TAR models in Equations (1.4) and (1.5) for the
unemployment rate series, we consider model goodness-of-fit and out-of-sample
predictions. For goodness of fit, Figure 1.5 shows the density functions of the
standardized residuals of both fitted models. The solid line is for the TAR
model whereas the dashed line is for the linear AR(12) model. From the density
functions, it is seen that the standardized residuals of the TAR model are closer
to the normality assumption. Specifically, the residuals of the TAR model are less
skewed and have lower excess kurtosis. In this particular instance, the skewness
and excess kurtosis of the standardized residuals of the linear AR(12) model are
0.318 and 1.323, respectively, whereas those of the TAR model are 0.271 and
0.256, respectively. Under the assumption that the standardized residuals are
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Figure 1.5 Density functions of standardized residuals of the linear AR(12) model in
Equation (1.4) and the TAR(4,12) model of Equation (1.5) for the change series of US
quarterly unemployment rates from 1948.II to 2015.II. The solid line is for the TAR model.

independent and identically distributed, the t ratios for excess kurtosis are 4.33
and 0.84, respectively, for the fitted AR(12) and the TAR model. Similarly, the t
ratios for the skewness are 2.08 and 1.77, respectively, for AR(12) and the TAR
model. If the 5% critical value of 1.96 is used, then one cannot reject the hypothe-
ses that the standardized residuals of the fitted TAR model in Equation (1.5)
are symmetric and do not have heavy tails. On the other hand, the standardized
residuals of the linear AR(12) model are skewed and have heavy tails.

We also use rolling one-step ahead out-of-sample forecasts, i.e. back-testing,
to compare the two fitted models. The starting forecast origin is t = 200 so that we
have 69 one-step ahead predictions for both models. The forecasting procedure is
as follows. Let n be the starting forecast origin. For a given model, we fit the model
using the data from t = 1 to t = n; use the fitted model to produce a prediction for
t = n + 1 and compute the forecasting error. We then advance the forecast origin
by 1 and repeat the estimation–prediction process. We use root mean squared error
(RMSE), mean absolute error (MAE) and (average) bias of predictions to quantify
the performance of back-testing. In addition, we also classify the predictions based
on the regime of the forecast origin. The results are given in Table 1.1. From the
table, it is seen that while the nonlinear TAR model shows some improvement in
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(a) Linear AR(12) model

Criterion Overall Origins in Regime 1 Origins in Regime 2

RMSE 0.2166 0.1761 0.2536
MAE 0.1633 0.1373 0.1916
Bias 0.0158 0.0088 0.0235

(b) Threshold AR model

RMSE 0.2147 0.1660 0.2576
MAE 0.1641 0.1397 0.1906
Bias −0.0060 −0.1003 0.0968

Table 1.1 Performance of out-of-sample forecasts of the linear AR(12) model in
Equation (1.4) and the threshold AR model in Equation (1.5) for the US quarterly
unemployment rates from 1948.II to 2015.II. The starting forecast origin is 200, and there
are 69 one-step ahead predictions.

out-of-sample predictions, the improvement is rather minor and seems to come
from those associated with forecast origins in Regime 1.

In this example, a simple nonlinear model can help in prediction and, more
importantly, the nonlinear model improves the model goodness of fit as shown by
the properties of the residuals.

Example 1.2 As a second example, we consider the weekly crude oil prices
from May 12, 2000 to August 28, 2015. The data used are part of the commodity
prices available from Federal Reserve Bank of St. Louis and they are the crude oil
prices, West Texas Intermediate, Cushing, Oklahoma. Figure 1.6 shows the time
plot of the original crude oil prices and the first differenced series of the prices.
The differenced series is used in our analysis as the oil prices exhibit strong serial
dependence, i.e. unit-root nonstationarity. From the plots, it is seen that the vari-
ability of the time series varies over time. Let xt = pt − pt−1, where pt denotes the
observed weekly crude oil price at week t. If scalar AR models are employed, an
AR(8) model is selected by AIC and the fitted model, after removing insignificant
parameters, is

xt = 0.197xt−1 + 0.153xt−8 + at, 𝜎2
a = 6.43, (1.6)

where the standard errors of both AR coefficients are around 0.034. This sim-
ple AR model adequately describes the dynamic correlations of xt, but it fails
to address the time-varying variability. Figure 1.7 shows the sample ACF of the
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Figure 1.6 Time plot of weekly crude oil prices from May 12, 2000 to August 28, 2015:
(a) oil prices and (b) the first differenced series. The prices are West Texas Intermediate,
Cushing, Oklahoma, and obtained from FRED of Federal Reserve Bank, St. Louis

residuals and those of the squared residuals. From the plots, the residuals have no
significant serial correlations, but the squared residuals have strong serial depen-
dence. In finance, such a phenomenon is referred to as time-varying volatility or
conditional heteroscedasticity.

One approach to improve the linear AR(8) model in Equation (1.6) is to use
the generalized autoregressive conditional heteroscedastic (GARCH) model of
Bollerslev (1986). GARCH models are nonlinear based on the linearity defini-
tion of Equation (1.2). In this particular instance, the fitted AR-GARCH model
with Student-t innovations is

xt ≈ 0.227xt−1 + 0.117xt−8 + at, (1.7)

at = 𝜎t𝜖t, 𝜖t ∼𝑖𝑖d t∗7.91,

𝜎2
t = 0.031 + 0.072a2

t−1 + 0.927𝜎2
t−1, (1.8)
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Figure 1.7 Sample autocorrelation functions of (a) the residuals of the AR(8) model in
Equation (1.6) for the first differenced series of weekly crude oil prices and (b) the squared
residuals.

where t∗v denotes standardized Student-t distribution with v degrees of freedom.
In Equation (1.7) we use the approximation ≈, since we omitted the insignificant
parameters at the 5% level for simplicity. In Equation (1.8), the standard errors
of the parameters are 0.024, 0.016, and 0.016, respectively. This volatility model
indicates the high persistence in the volatility. For further details about volatility
models, see Chapter 5 and Tsay (2010, Chapter 3). Model checking indicates that
the fitted AR-GARCH model is adequate. For instance, we have Q(20) = 14.38
(0.81) and 9.89(0.97) for the standardized residuals and the squared standardized
residuals, respectively, of the model, where the number in parentheses denotes the
p value. Figure 1.8(a) shows the time plot of xt along with point-wise two-standard
errors limits, which further confirms that the model fits the data well. Figure 1.8(b)
shows the quantile-to-quantile (QQ) plot of the standardized residuals versus the
Student-t distribution with 7.91 degrees of freedom. The plot shows that it is rea-
sonable to employ the Student-t innovations.

Compared with the linear AR(8) model in Equation (1.6), the fitted
AR-GARCH model does not alter the serial dependence in the xt series



JWST902-c01 JWST902-Tsay September 4, 2018 7:31 Printer Name: Trim: 229mm × 152mm

12 1. WHY SHOULD WE CARE ABOUT NONLINEARITY?

0

20
0

40
0

60
0

80
0

15
5

−
5

−
15

Series with 2 conditional SD superimposed

Index

x

−
4

−
2 0 2 4

4
2

0
−

4

qstd − QQ plot

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

(a)

(b)

Figure 1.8 (a) The time plot of the first-differenced crude oil prices and point-wise two
standard error limits of the model in Equations (1.7) and (1.8). (b) The quantile-to-quantile
plot for the Student-t innovations.

because Equation (1.7) is relatively close to Equation (1.6). What the GARCH
model does is to handle the time-varying volatility so that proper inference,
such as interval predictions, can be made concerning the crude oil prices. In
some finance applications volatility plays a key role and the fitted AR-GARCH
nonlinear model can be used.

Alternatively, one can use the Markov switching model (MSM) to improve the
linear AR(8) model. Details of the MSM are given in Chapters 2 and 7. In this
particular application, the model used is

xt =

{
𝜙11xt−1 + 𝜙12xt−2 +⋯ + 𝜙18xt−8 + 𝜎1𝜖t, if st = 1,

𝜙21xt−1 + 𝜙22xt−2 +⋯ + 𝜙28xt−8 + 𝜎2𝜖t, if st = 2,
(1.9)

where 𝜙𝑖,j denotes the coefficient of state 𝑖 at lag-j, 𝜖t are independent and identi-
cally distributed random variables with mean zero and variance 1, 𝜎𝑖 is the innova-
tion standard error of state 𝑖, and st denotes the status of the state at time t. This is a
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Par. 𝜙𝑖1 𝜙𝑖2 𝜙𝑖3 𝜙𝑖4 𝜙𝑖5 𝜙𝑖6 𝜙𝑖7 𝜙𝑖8 𝜎𝑖

State 1

Est. −0.60 0.53 −0.43 −0.04 −0.08 −0.14 −0.08 0.12 3.04
s.e. 0.27 0.20 0.24 0.11 0.16 0.13 0.16 0.13

State 2

Est. 0.37 −0.12 0.12 0.03 0.08 0.09 0.05 0.15 1.89
s.e. 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.04

Table 1.2 Parameter estimates of the Markov switching model for the first-differenced
series of weekly crude oil prices from May 19, 2000 to August 28, 2015. Par., parameter;
Est., estimate; s.e., standard error.

simple two-state MSM and the states change over time according to the transition
probability matrix

P =

[
p11 p21

p12 p22

]
,

where p𝑖j denotes the probability of switching from state 𝑖 at time t − 1 to state j
at time t. This notation is used in the MSwM package of R and in Hamilton (1994,
Chapter 22). From the definition, the rows of P sum to 1 and p𝑖𝑖 denotes the prob-
ability of staying in state 𝑖 from time t − 1 to time t. Consequently, 1∕(1 − p𝑖𝑖)
denotes the expected duration for state 𝑖.

For the first differenced series xt of the crude oil prices, parameter estimates of
the MSM are given in Table 1.2. The fitted transition matrix is

P̂ =

[
0.066 0.934

0.268 0.732

]
.

Figure 1.9 shows the sample ACF and PACF of the residuals (a and b) and the
squared residuals (c and d) of each state. From the plots, the serial correlations
of xt are well described by the fitted MSM in Equation (1.9). More interestingly,
the ACF of squared residuals indicates that the MSM is capable of modeling the
time-varying volatility. Figure 1.10 shows the time plots of smoothed and filtered
probabilities for each state.

From Table 1.2, it is seen that state st = 1 corresponds to the volatile state and
its coefficient estimates are more uncertain with larger standard errors. This is
understandable since if xt−1 is in state 1, xt stays in state 1 with a small probability
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Figure 1.9 The sample autocorrelation functions of the residuals (a and b) and squared
residuals (c and d), by state, for the Markov switching model of Equation (1.9) fitted to the
first-differenced series of weekly crude oil prices from May 19, 2000 to August 28, 2015.

0.066 and it switches to state 2 about 93% of the time. The marginal probability
that xt is in state 1 is 0.223. The table also shows that the serial dependence of xt
depends on the state; the serial dependence can be modeled by an AR(3) model in
state 1, but it requires an AR(8) model in state 2. Figure 1.10 confirms that xt stays
in state 2 often, implying that during the data span the crude oil prices encountered
some volatile periods, but the high volatility periods are short-lived.

In this example, we show that nonlinear models can provide a deeper under-
standing of the dynamic dependence of a time series. In addition, various nonlinear
models can be used to improve the fitting of a linear model. The Markov switching
model allows the dynamic dependence of a time series to change according to the
state it belongs to. It is also capable of handling time-varying volatility.
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Figure 1.10 (a) Filtered and (b) smoothed probabilities for state 1 of the Markov switch-
ing model of Equation (1.9) fitted to the first-differenced series of weekly crude oil prices
from May 19, 2000 to August 28, 2015.

Example 1.3 In this example, we revisit the well-known gas furnace series of
Box and Jenkins (1976). The data consist of the input gas feed rate, xt, and corre-
sponding output CO2 concentration, yt, from a gas furnace. There are 296 observa-
tions taken at time intervals of 9 seconds. The top two plots of Figure 1.11 show the
gas rate xt and the output CO2 concentration. These two series have been widely
used in the literature to demonstrate the analysis of transfer function models. Fol-
lowing Box and Jenkins (1976), one can use linear transfer function models. The
model for the gas feed rate is

xt = 1.97xt−1 − 1.37xt−2 + 0.34xt−3 + 𝜖t, 𝜎2
𝜖 = 0.035,

where the standard errors of the AR coefficients are 0.05, 0.10, and 0.05, respec-
tively. The transfer function model used is

yt = 53.37 − 0.53B3 + 0.38B4 + 0.52B5

1 − 0.55B
xt +

1
1 − 1.53B + 0.63B2

at, (1.10)
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Figure 1.11 Time plots of the gas furnace data: (a) input gas feed rates, (b) output CO2

concentrations, and (c) gas rates weighted by time trend st = 2t∕296.

where B denotes the back-shift (or lag) operator such that Bxt = xt−1, the variance
of at is 0.0576, and all parameter estimates are statistically significant at the usual
5% level. Residual analysis shows that the model in Equation (1.10) is adequate.
For instance, the Ljung–Box statistics of the residuals gives Q(12) = 15.51 with p
value 0.21.

On the other hand, nonlinear transfer function models have also been pro-
posed in the literature, e.g. Chen and Tsay (1996). In this example, we follow
the approach of Tsay and Wu (2003) by allowing the coefficients of the transfer
function model to depend on a state variable st. In this particular instance, the
state variable used is st = 2t∕296, which simply represents the time sequence of
the observations. The corresponding transfer function model would become

yt = c0 +
𝜔3(st)B

3 + 𝜔4(st)B
4 + 𝜔5(st)B

5

1 − 𝛿(st)B
xt +

1
1 − 𝜙1B − 𝜙2B2

at,
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where 𝜔𝑖(st) and 𝛿(st) are smooth functions of the state variable st, c0 and 𝜙𝑖
are constant. This is a special case of the functional-coefficient models of Chen
and Tsay (1993). To simplify the model, Tsay and Wu (2003) used the first-order
Taylor series approximations of the functional coefficients

𝜔𝑖(st) ≈ 𝜔𝑖0 + 𝜔𝑖1st, 𝛿(st) ≈ 𝛿0 + 𝛿1st,

where𝜔𝑖j and 𝛿j are constant, and simplified the model further to obtain the transfer
function model

yt = 52.65 − 1.22B3

1 − 0.61B
xt + 0.73st +

0.99B3 − 0.99B4

1 − 0.65B
(stxt) (1.11)

+ 1
1 − 1.42B + 0.49B2

at,

where the residual variance is 𝜎2
a = 0.0461 and all coefficient estimates are

statistically significant at the 5% level. The Ljung–Box statistics of the results
gives Q(12) = 9.71 with p value 0.64. This model improves the in-sample fit as
the residual variance drops from 0.0576 to 0.0431. Figure 1.11(c) shows the time
plot of stxt, from which the new variable stxt seems to emphasize the latter part
of the xt series.

Table 1.3 shows the results of out-of-sample forecasts of the two transfer func-
tion models in Equations (1.10) and (1.11). These summary statistics are based on
96 one-step ahead forecasts starting with initial forecast origin t = 200. As before,
the models were re-estimated before prediction once a new observation was avail-
able. From the table it is easily seen that the model in Equation (1.11) outper-
forms the traditional transfer function model in all three measurements of out-
of-sample prediction. The improvement in the root mean squared error (RMSE) is
(0.3674 − 0.3311)∕0.3311= 10.96%. This is a substantial improvement given that
the model in Equation (1.10) has been regarded as a gold standard for the data set.

In this example we show that the functional-coefficient models can be useful
in improving the accuracy of forecast. It is true that the model in Equation (1.11)

Model Bias RMSE MAE

Equation (1.10) 0.0772 0.3674 0.2655
Equation (1.11) 0.0300 0.3311 0.2477

Table 1.3 Summary statistics of out-of-sample forecasts for the models in Equations
(1.10) and (1.11). The initial forecast origin is 200 and the results are based on 96
one-step ahead predictions.



JWST902-c01 JWST902-Tsay September 4, 2018 7:31 Printer Name: Trim: 229mm × 152mm

18 1. WHY SHOULD WE CARE ABOUT NONLINEARITY?

o
o
o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

oo

o

o

o
o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o
o

o
o

o

o

o

oo

o

o

oo
o
oo

o

oo

o

o
o

oo

o
o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

200019981996199419921990

50
40

30
20

10
0

Year

C
as

es

Figure 1.12 Time plot of the number of cases of Campylobacterosis infections in north-
ern Quebec, Canada, in 4-week intervals from January 1990 to October 2000 for 140
observations.

remains linear because the added variable stxt can be treated as a new input vari-
able. However, the model was derived by using the idea of functional-coefficient
models, a class of nonlinear models discussed in Chapter 2.

Example 1.4 Another important class of nonlinear models is the generalized
linear model. For time series analysis, generalized linear models can be used to
analyze count data. Figure 1.12 shows the number of cases of Campylobactero-
sis infections in the north of the province Quebec, Canada, in 4-week intervals
from January 1990 to the end of October 2000. The series has 13 observations per
year and 140 observations in total. See Ferland et al. (2006) for more information.
The data are available from the R package tscount by Liboschik et al. (2015).
Campylobacterosis in an acute bacterial infectious disease attacking the digestive
system. As expected, the plot of Figure 1.12 shows some seasonal pattern.

This is an example of time series of count data, which occur in many scientific
fields, but have received relatively less attention in the time series literature. Sim-
ilar to the case of independent data, Poisson or negative binomial distribution is
often used to model time series of count data. Here one postulates that the time
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Figure 1.13 Sample autocorrelation function of the cases of Campylobacterosis infec-
tions in northern Quebec, Canada, in 4-week intervals from January 1990 to October 2000
for 140 observations.

series of count data is driven by an underlying intensity process 𝜆t. This latent
process governs the time evolution of the conditional expectation of the data, has
dynamic dependence, and is related to the data via a link function. In most appli-
cations, the link function is either the identify function or the log transformation.
Details of modeling time series of count data are given in Chapter 5. Here we
use the example to demonstrate yet another application of nonlinear time series
analysis. Figure 1.13 shows the sample ACF of the data. Clearly, there is dynamic
dependence with seasonality in the data.

Let xt denote the number of cases of Campylobacterosis infections in week t
and 𝜆t = E(xt|Ft−1), where Ft−1 denotes the information available at time t − 1. A
commonly used distribution for count data is

xt|Ft−1 ∼ Poi(𝜆t) or xt|Ft−1 ∼ NB(𝜆t, 𝛼), (1.12)
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where Poi(𝜆t) and NB(𝜆t, 𝛼) denote, respectively, a Poisson distribution with mean
𝜆t and a negative binomial distribution with mean 𝜆t and dispersion parameter
𝛼 > 0. Specifically, for the Poisson distribution we have

P(xt = k|𝜆t) =
1
k!

e−𝜆t𝜆k
t , k = 0, 1,… .

For the negative binomial distribution, there are several parameterizations avail-
able in the literature. We use the probability mass function

P(xt = k|𝜆t, 𝛼) = Γ(𝛼 + k)
Γ(𝛼)Γ(k + 1)

(
𝛼

𝛼 + k

)𝛼 ( 𝜆t

𝛼 + 𝜆t

)k

, k = 0, 1,… .

Under this parameterization, we have E(xt|Ft−1) = 𝜆t and Var(xt|Ft−1) =
𝜆t + 𝜆2

t ∕𝛼. Here 𝛼 ∈ (0,∞) is the dispersion parameter and the negative binomial
distribution approaches the Poisson distribution as 𝛼 → ∞.

For the time series in Figure 1.12, one can introduce the dynamic dependence
for the data by using the model

𝜆t = 𝛾0 + 𝛾1xt−1 + 𝛿13𝜆t−13, (1.13)

where 𝜆t−13 is used to describe the seasonality of the data. This model is similar to
the GARCH model of Bollerslev (1986) for the volatility model and belongs to the
class of observation-driven models in generalized linear models. See Ferland et al.
(2006), among others. Using Equation (1.13) with negative binomial distribution,
the quasi maximum likelihood estimation gives

𝜆t = 2.43 + 0.594xt−1 + 0.188𝜆t−13,

where the dispersion parameter is 0.109 and the standard deviations of the coeffi-
cient estimates are 1.085, 0.092, and 0.123, respectively. Figure 1.14 shows vari-
ous plots of model checking for the fitted model in Equation (1.13). From the time
plot of Pearson residuals, it is seen that certain outlying observations exist so that
the model can be refined. Comparing the autocorrelations of the data in Figure
1.13 and the residual autocorrelations in Figure 1.14, the simple model in Equa-
tion (1.13) does a decent job in describing the dynamic dependence of the count
data. Details of model checking and refinement of the generalized linear models
for time series of count data will be given in Chapter 5. The analysis can also be
handled by the state space model of Chapter 6.

In this example, we demonstrate that the generalized linear models, which are
nonlinear, can be used to analyze time series of count data.

1.4 NONLINEARITY TESTS

The flexibility of nonlinear models in data fitting may encounter the problem of
finding spurious structure in a given time series. It is, therefore, of importance
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Figure 1.14 Various model diagnostic statistics for the model in Equation (1.13) with
negative binomial distribution for the Campylobacterosis infection data. (a) ACF of Pearson
residuals, (b) non-randomized PIT histogram, (c) Pearson residuals over time, (d) marginal
calibration plot, and (e) cumulative periodogram of Pearson residuals.

to check the need for using nonlinear models. To this end, we introduce some
nonlinearity tests for time series data. Both parametric and nonparametric tests
are considered.

1.4.1 Nonparametric Tests

Several nonparametric statistics have been proposed in the literature for testing the
nonlinearity of a stationary time series. We discuss some of those statistics that are
useful and easily available for practical use.

The BDS test: Proposed by Brock et al. (1987) and later published by Brock
et al. (1996), this test is widely used to verify the null hypothesis that a given time
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series consists of independent and identically distributed (iid) random variables.
The test uses the idea of correlation integral popular in chaotic time series analysis.
Roughly speaking, a correlation integral is a measure of the frequency with which
temporal patterns repeat themselves in a data set. Consider a time series {xt|t =
1,… , T}, where T denotes the sample size. Let m be a given positive integer.
Define an m-history of the series as xm

t = (xt, xt−1,… , xt−m+1) for t = m,… , T .
Define the correlation integral at the embedding dimension m as

C(m, 𝜖) = lim
Tm→∞

2
Tm(Tm − 1)

∑ ∑
m≤s<t≤T

I(xm
t , xm

s |𝜖) (1.14)

where Tm = T − m + 1 is the number of constructed m-histories, 𝜖 is a given
positive real number, and I(u, v|𝜖) is an indicator variable that equals to one if‖u − v‖ < 𝜖 and zero otherwise, where ‖ ⋅ ‖ denotes the sup-norm of two vectors.
For the m-histories, we have I(u, v|𝜖) = 1 if |u𝑖 − v𝑖| < 𝜖 for 𝑖 = 1,… , m and =
0 otherwise. For a given 𝜖, Equation (1.14) simply measures the probability of
m-histories being within a distance 𝜖 of each other.

For testing purpose, the magnitude of the correlation integral in Equation (1.14)
needs to be judged. To this end, the BDS test compares C(m, 𝜖) with C(1, 𝜖) under
the null hypothesis. Intuitively, if {xt} are iid, then there exist no patterns in the data
so that a probability of the m-history is simply the mth power of the corresponding
probability of the 1-history. This is so because under independence Pr(A ∩ B) =
Pr(A) × Pr(B). In other words, under the iid assumption, we expect that C(m, 𝜖) =
C(1, 𝜖)m. The BDS test is then defined as

D(m, 𝜖) =
√

T[Ĉ(m, 𝜖) − {Ĉ(1, 𝜖)}m]
s(m, 𝜖)

(1.15)

where Ĉ(k, 𝜖) is given by

Ĉ(k, 𝜖) = 2
Tk(Tk − 1)

∑ ∑
k≤s<t≤T

I(xk
t , xk

s |𝜖), k = 1, m,

and s(m, 𝜖) denotes the standard error of Ĉ(m, 𝜖) − {Ĉ(1, 𝜖)}m, which can be con-
sistently estimated from the data under the null hypothesis. For details, readers
may consult Brock et al. (1996) or Tsay (2010, Chapter 4). In practice, one needs
to select the embedding dimension m and the distance 𝜖.

The BDS test is available in the fNonlinear package of R under the command
bdsTest. The user has the option to select the maximum embedding dimension
m and the distance 𝜖. The default maximum dimension is m = 3, which means the
embedding dimensions used in the test are 2 and 3. The default choices of 𝜖 are
(0.5, 1, 1.5, 2)�̂�x, where �̂�x denotes the sample standard error of xt. To demonstrate,
we consider a simulation of iid random variables from N(0, 1) and a daily log return
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series of the stock of International Business Machines (IBM) Corporation. Details
are given below with output edited for simplicity.

R demonstration: BDS test using the package fNonlinear.

> require(fNonlinear)
> set.seed(1)
> x < rnorm(300)
> bdsTest(x)
Title: BDS Test

Test Results:
PARAMETER:
Max Embedding Dimension: 3
eps[1]: 0.482; eps[2]: 0.964
eps[3]: 1.446; eps[4]: 1.927

STATISTIC:
eps[1] m=2: 1.1256; eps[1] m=3: 1.4948
eps[2] m=2: 0.7145; eps[2] m=3: 1.1214
eps[3] m=2: 0.6313; eps[3] m=3: 0.8081
eps[4] m=2: 0.7923; eps[4] m=3: 1.2099

P VALUE:
eps[1] m=2: 0.2604; eps[1] m=3: 0.135
eps[2] m=2: 0.4749; eps[2] m=3: 0.2621
eps[3] m=2: 0.5278; eps[3] m=3: 0.419
eps[4] m=2: 0.4282; eps[4] m=3: 0.2263

> require("quantmod")
> getSymbols("IBM",from="20100102",to="20150930")
> head(IBM)

IBM.Open IBM.High IBM.Low IBM.Close IBM.Volume IBM.Adjusted
20100104 131.18 132.97 130.85 132.45 6155300 117.6580
20100105 131.68 131.85 130.10 130.85 6841400 116.2367
> rtn < diff(log(as.numeric(IBM[,6])))
> ts.plot(rtn) # not shown
> Box.test(rtn,type="Ljung",lag=10)

BoxLjung test
data: rtn
Xsquared = 15.685, df = 10, pvalue = 0.109 # No serial correlations
> bdsTest(rtn)
Title: BDS Test

Test Results:
PARAMETER:
Max Embedding Dimension: 3
eps[1]: 0.006; eps[2]: 0.012
eps[3]: 0.018; eps[4]: 0.024

STATISTIC:
eps[1] m=2: 4.4058; eps[1] m=3: 5.3905
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eps[2] m=2: 4.2309; eps[2] m=3: 5.429
eps[3] m=2: 3.9341; eps[3] m=3: 5.4255
eps[4] m=2: 3.7848; eps[4] m=3: 5.3304

P VALUE:
eps[1] m=2: 1.054e05; eps[1] m=3: 7.026e08
eps[2] m=2: 2.327e05; eps[2] m=3: 5.666e08
eps[3] m=2: 8.349e05; eps[3] m=3: 5.78e08
eps[4] m=2: 0.0001538; eps[4] m=3: 9.802e08

From the output, it is clear that in this particular instance the BDS test performs
well. It fails to reject the null hypothesis of iid for the random sample from N(0, 1),
but successfully rejects the null hypothesis that the daily log returns of IBM
are iid.

Discussion: The BDS test is designed to test the null hypothesis of iid, as such
one needs to remove any linear dynamic dependence before applying the test to
detect nonlinearity in a time series. In other words, care must be exercised in using
the BDS test to detect nonlinearity. In practice, the test is typically applied to the
residuals of a fitted linear time series model. In addition, a rejection by the BDS
test does not provide any specific information to improve the fitted model. Further
analysis of the residuals is often needed to seek directions for model refinement
after the null hypothesis is rejected by the test. As suggested by the default option,
the distance 𝜖 used in the BDS test should be related to the standard error of xt.

The McLeod–Li test: McLeod and Li (1983) proposed a general Portmanteau
test for nonlinearity under the assumption that the time series xt is fourth-order
stationary, i.e. the x2

t process is weakly stationary. Similar to the BDS test, the
proposed Portmanteau test is typically applied to the residual ât of a fitted linear
time series model. Define the lag-𝓁 autocorrelation of the squared residuals as

�̂�aa(𝓁) =

∑T
t=𝓁+1

(
â2

t − �̂�
2
) (

â2
t−𝓁 − �̂�2

)
∑T

t=1

(
â2

t − �̂�2
) ,

where �̂�2 =
∑T

t=1 â2
t ∕T and T is the sample size. McLeod and Li show that, for a

fixed positive integer m, the joint distribution of√
T[�̂�aa(1), �̂�aa(2),… , �̂�aa(m)]′

is asymptotically multivariate normal with mean zero and identity covariance
matrix provided that the fitted linear model is adequate for the xt series. Using
this result, McLeod and Li (1983) proposed the Portmanteau statistics

Q∗(m) = T(T + 2)
m∑

𝓁=1

�̂�2
aa(𝓁)

T − 𝓁
(1.16)
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to detect nonlinearity in xt. Under the assumption that xt is fourth-order stationary
and the fitted linear model is adequate, Q∗(m) is asymptotically distributed as 𝜒2

m.
This is essentially a Ljung–Box test on the x2

t series.
In the literature, the Portmanteau statistics of Equation (1.16) is often used to

check for conditional heteroscedasticity. As a matter of fact, the test is asymptoti-
cally equivalent to the Lagrange multiplier test of Engle (1982) for the autoregres-
sive conditional heteroscedastic (ARCH) model. To test for ARCH effects, Engle
(1982) uses the AR(m) model

â2
t = 𝛽0 + 𝛽1â2

t−1 +⋯ + 𝛽mâ2
t−m + 𝜖t, (1.17)

where 𝜖t denotes the error term, and considers the null hypothesis H0 : 𝛽1 = 𝛽2 =
⋯ = 𝛽m = 0 versus the alternative hypothesis Ha : 𝛽𝑖 ≠ 0 for some 𝑖 ∈ {1,… , m}.
The F-statistic of the linear regression in Equation (1.17) can be used to perform
the test. Alternatively, one can use mF as a test statistic. Under the same conditions
as those of McLeod and Li (1983), mF is asymptotically distributed as 𝜒2

m. The
Q∗(m) statistics of Equation (1.16) can be easily computed. We demonstrate this
below.

R demonstration: McLeod–Li and Engle tests for nonlinearity.

> set.seed(15)
> xt < rnorm(300)
> Box.test(xt,lag=10,type='Ljung')

BoxLjung test
data: xt
Xsquared = 11.095, df = 10, pvalue = 0.3502 # No serial correlations
> Box.test(xtˆ2,lag=10,type='Ljung')

BoxLjung test
data: xtˆ2
Xsquared = 8.4539, df = 10, pvalue = 0.5846 # Qstar test

> require(quantmod)
> getSymbols("MSFT",from="20090102",to="20151015",src="google")
> msft < diff(log(as.numeric(MSFT$MSFT.Close))) #log returns
> Box.test(msft,lag=10,type='Ljung')

BoxLjung test
data: msft
Xsquared = 17.122, df = 10, pvalue = 0.0717 # No serial correlations
> Box.test(msftˆ2,lag=10,type='Ljung')

BoxLjung test
data: msftˆ2
Xsquared = 70.54, df = 10, pvalue = 3.487e11 ## Nonlinearity
### Engle's test with m = 10.
> nT < length(msft)
> y < msft[11:nT]ˆ2
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> X < NULL
> for (i in 1:10)
+ X < cbind(X,msft[(11i):(nTi)]ˆ2)
+ }
> m2 < lm(y ˜X) ## Linear regression
> anova(m2)
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
X 10 0.00003036 3.0358e06 4.65 1.447e06 ***
Residuals 1687 0.00110138 6.5286e07
> qstar = 4.64*10
> pv = 1 pchisq(qstar,10)
> print(c(qstar,pv))
[1] 4.65e+01 1.162495e06 ### ARCH effect exists

From the output, the traditional Ljung–Box statistics confirm that both the
series of iid N(0, 1) random variables and the daily log returns of Microsoft
(MSFT) stock from January 2010 to October 15, 2015 have no serial correlations.
On the other hand, the McLeod–Li test statistic of (1.16) cannot reject the null
hypothesis of linear time series for the N(0, 1) iid random sample, but it clearly
rejects linearity for the daily log returns of MSFT stock. The ARCH effect is also
confirmed by the Lagrange multiplier test of Engle (1982).

Rank-based Portmanteau test: The McLeod–Li test requires the existence of
the fourth moment of the underlying time series xt. In some applications, empir-
ical data may exhibit high excess kurtosis. In this situation, the performance of
the McLeod–Li test may deteriorate. To overcome the impact of heavy-tails on
the McLeod–Li test, one can apply the rank-based Ljung–Box statistics. See, for
instance, Dufour and Roy (1986) and Tsay (2014, Chapter 7) and the references
therein. Let R𝑖 be the rank of â2

𝑖
in the squared residuals {â2

t }. The lag-𝓁 rank-
based serial correlation is defined as

�̃�𝓁 =
∑T

t=𝓁+1(Rt − R̄)(Rt−𝓁 − R̄)∑T
t=1(Rt − R̄)2

, 𝓁 = 1, 2,…

where it can be shown that

R̄ =
T∑

t=1

Rt∕T = (T + 1)∕2

T∑
t=1

(Rt − R̄)2 = T(T2 − 1)∕12.



JWST902-c01 JWST902-Tsay September 4, 2018 7:31 Printer Name: Trim: 229mm × 152mm

1.4 NONLINEARITY TESTS 27

Furthermore, Dufour and Roy (1986) show that

E(�̃�𝓁) = −(T − 𝓁)∕[T(T − 1)],

Var(�̃�𝓁) = 5T4 − (5𝓁 + 9)T3 + 9(𝓁 − 2)T2 + 2𝓁(5𝓁 + 8)T + 16𝓁2

5(T − 1)2T2(T + 1)
.

The rank-based Portmanteau statistic then becomes

QR(m) =
m∑

𝓁=1

[�̃�𝓁 − E(�̃�𝓁)]2

Var(�̃�𝓁)
, (1.18)

which is asymptotically distributed as 𝜒2
m if the {â2

t } series has no serial correla-
tions.

To compare the finite-sample performance of the McLeod–Li Portmanteau test
in Equation (1.16) and its rank-based counterpart in Equation (1.18), we conduct
a simple simulation. We generate iid sequences from N(0, 1) and t5 distributions
with 300 observations and compute the two test statistics for m = 1, 5, and 10. This
process is repeated for 10,000 iterations. Some selected quantiles of the empiri-
cal distributions of Q∗(1), Q∗(5), Q∗(10) and QR(1), QR(5), QR(10) are given in
Table 1.4 along with the quantiles of the corresponding 𝜒2

m distributions.
Figure 1.15 shows the empirical density functions Q∗(10) and QR(10) over the

10,000 iterations. The iid sequences were generated from N(0, 1) for 300 obser-
vations. The solid and dashed lines are for Q∗(10) and QR(10), respectively. The
dotted line of the plot shows the density function of 𝜒2

10. Figure 1.16 shows similar
density functions when the iid sequences were generated from a Student-t distribu-
tion with 5 degrees of freedom. From Table 1.4 and Figures 1.15 and 1.16, it is seen
that both Q∗(10) of McLeod–Li test in Equation (1.16) and the rank-based QR(10)
in Equation (1.18) follow reasonably well the asymptotic 𝜒2

10 distribution under
the normality. On the other hand, the Q∗(10) statistic encounters some size distor-
tion and power loss when the iid sequences are from the t5 distribution whereas
the rank-based Portmanteau statistic QR(10) continues to perform well. See the
shift of the empirical density of Qm(10) in Figure 1.16. Therefore, care must be
exercised when one applies the McLeod–Li test to detect nonlinearity when the
underlying process has heavy tails.

The Peña–Rodriguez test: Peña and Rodriguez (2002) proposed a modified
Portmanteau test statistic that can be used for model checking of a fitted linear
time series model, including nonlinearity in the residuals. Using simulation stud-
ies, the authors show that their modified test statistics perform well in finite sam-
ples. For simplicity, let zt be a function of the residual series ât of a fitted linear
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Distribution Statistics 0.025 0.05 0.5 0.95 0.975

𝜒2
1 0.00098 0.00393 0.455 3.842 5.024

N(0, 1) Q∗(1) 0.00096 0.00372 0.451 3.744 4.901
QR(1) 0.00088 0.00392 0.463 3.762 5.056

t5 Q∗(1) 0.00074 0.00259 0.288 2.936 4.677
QR(1) 0.00098 0.00367 0.441 3.716 4.856

𝜒2
5 0.8312 1.1455 4.351 11.070 12.833

N(0, 1) Q∗(5) 0.7903 1.0987 4.129 11.045 13.131
QR(5) 0.7884 1.1193 4.263 11.042 12.792

t5 Q∗(5) 0.3634 0.5575 2.909 10.992 15.047
QR(5) 0.8393 1.1287 4.254 11.123 13.002

𝜒2
10 3.2470 3.9403 9.342 18.307 20.483

N(0, 1) Q∗(10) 3.1077 3.7532 8.870 12.286 21.122
QR(10) 3.1737 3.8524 9.184 18.163 20.516

t5 Q∗(10) 1.1347 1.6916 6.685 19.045 23.543
QR(10) 3.2115 3.8265 9.216 18.495 20.786

Table 1.4 Empirical quantiles of McLeod–Li Portmanteau statistics and the rank-based
Portmanteau statistics for random samples of 300 observations. The realizations are
generated from N(0, 1) and Student-t distribution with 5 degrees of freedom. The results
are based on 10,000 iterations.

model. For instance, zt = â2
t or zt = |ât|. The lag-𝓁 sample autocorrelation of zt is

defined as

�̂�𝓁 =
∑T

t=𝓁+1(zt−𝓁 − z̄)(zt − z̄)∑T
t=1(zt − z̄)2

, (1.19)

where, as before, T is the sample size and z̄ =
∑

t zt∕T is the sample mean of zt. As
usual, �̂�𝓁 is a consistent estimate of the lag-𝓁 autocorrelation 𝜌𝓁 of zt under some
regularity conditions. For a given positive integer m, the Peña and Rodriguez test
statistic for testing the null hypothesis of H0 : 𝜌1 = ⋯ = 𝜌m = 0 is

D̂m = T[1 − |R̂m|1∕m], (1.20)
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Figure 1.15 Empirical density functions of Q∗(10) in Equation (1.16) (solid line) and
QR(10) in Equation (1.18) (dashed line) when the iid sequences are generated from N(0, 1).
The results are for sample size 300 and 10,000 iterations. The dotted line denotes the density
function of 𝜒2

10.

where the (m + 1) by (m + 1) matrix R̂m is defined below:

R̂m =

⎡⎢⎢⎢⎢⎢⎣

1 �̂�1 ⋯ �̂�m

�̂�1 1 ⋯ �̂�m−1

⋮ ⋮ ⋱ ⋮

�̂�m �̂�m−1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎦
. (1.21)

Using the idea of pseudo-likelihood, Peña and Rodriguez (2006) further modified
the test statistic in Equation (1.20) to

D∗
m = − T

m + 1
log(|R̂m|), (1.22)

where the denominator m + 1 is the dimension of R̂m. Under the assumption that
the fitted ARMA(p, q) model is correctly specified, Peña and Rodriguez (2006)
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Figure 1.16 Empirical density functions of Q∗(10) in Equation (1.16) (solid line) and
QR(10) in Equation (1.18) (dashed line) when the iid sequences are generated from a
Student-t distribution with 5 degrees of freedom. The results are for sample size 300 and
10,000 iterations. The dotted line denotes the density function of 𝜒2

10.

show that the test statistic D∗
m of Equation (1.22) is asymptotically distributed

as a mixture of m independent 𝜒2
1 random variates. The weights of the mixture

are rather complicated. However, the authors derived two approximations to sim-
plify the calculation. The first approximation of D∗

m is denoted by GD∗
m, which is

approximately distributed as a gamma random variate, Γ(𝛼, 𝛽), where

𝛼 =
3(m + 1)[m − 2(p + q)]2

2[2m(2m + 1) − 12(m + 1)(p + q)]
,

𝛽 =
3(m + 1)[m − 2(p + q)]

2m(2m + 1) − 12(m + 1)(p + q)
.

The second approximation is

ND∗
m = (𝛼∕𝛽)−1∕𝜆(𝜆∕

√
𝛼)
[
(D∗

m)1∕𝜆 − (𝛼∕𝛽)1∕𝜆
(

1 − 𝜆 − 1
2𝛼𝜆2

)]
, (1.23)
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where 𝛼 and 𝛽 are defined as before, and

𝜆 =
[

1 −
2(m∕2 − (p + q))(m2∕(4(m + 1)) − (p + q))

3(m(2m + 1)∕(6(m + 1)) − (p + q))2

]−1

.

Asymptotically, ND∗
n is distributed as N(0, 1). For large m, 𝜆 ≈ 4. In practice, the

authors recommend replacing �̂�𝓁 by �̃�𝓁 = (T + 2)�̂�𝓁∕(T − 𝓁) in the R̂m matrix of
Equation (1.21) for better performance in finite samples, especially when T is
small.

To demonstrate the ND∗
m statistic of Equation (1.23), we consider the daily log

returns of Microsoft stock from January 2, 2009 to October 15, 2015. The same
series was used before in demonstrating the McLeod–Li test. The sample size is
T = 1708 so that we select m = ⌊log(T)⌋ + 1 = 8. The test, denoted by PRnd, is
available in the package NTS.

R demonstration: Peña–Rodriguez test.

> require(quantmod); require(NTS)
> getSymbols("MSFT",from="20090102",to="20151015",src="google")
> msft < diff(log(as.numeric(MSFT$MSFT.Close))) # log returns
> log(length(msft))
[1] 7.443078
> PRnd(msft,m=8)
NDstat & pvalue 0.1828238 0.8549363
> PRnd(abs(msft),m=8)
NDstat & pvalue 2.302991 0.02127936

From the output, the daily log returns have no significant serial correlations,
but their absolute values have serial correlations. Again, the results confirm the
nonlinearity in the daily MSFT log returns.

1.4.2 Parametric Tests

Most parametric tests for nonlinearity are developed under the assumption of cer-
tain nonlinear models as the alternative. Roughly speaking, a well-behaved zero-
mean stationary time series xt can be written as a Volterra series

xt =
t−1∑
𝑖=1

𝜓𝑖xt−𝑖 +
t−1∑
𝑖=1

t−1∑
j=1

𝜓𝑖jxt−𝑖xt−j +
∑
𝑖

∑
j

∑
k

𝜙𝑖jkxt−𝑖xt−jxt−k +⋯ + 𝜖t, (1.24)

where 𝜖t denotes the noise term and the 𝜓s are real numbers. For a linear time
series xt, we have 𝜓𝑖j = 𝜓𝑖jk = ⋯ = 0. Therefore, some of the higher-order coef-
ficients are non-zero if xt is nonlinear. If the third order and higher coefficients are
zero, but 𝜓𝑖j ≠ 0 for some 𝑖 and j, then xt becomes a bilinear process. Parametric
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tests for nonlinearity of xt are statistics that exploit certain features of the Volterra
series in Equation (1.24). We discuss some of the parametric tests in this section.

The RESET test: Ramsey (1969) proposed a specification test for linear least
squares regression analysis. The test is referred to as a RESET test and is readily
applicable to linear AR models. Consider the linear AR(p) model

xt = X′
t−1𝝓 + at, (1.25)

where Xt−1 = (1, xt−1,… , xt−p)′ and 𝝓 = (𝜙0,𝜙1,… ,𝜙p)′. The first step of the

RESET test is to obtain the least squares estimate �̂� of Equation (1.25) and com-
pute the fitted value x̂t = X′

t−1�̂�, the residual ât = xt − x̂t, and the sum of squared

residuals SSR0 =
∑T

t=p+1 â2
t , where T is the sample size. In the second step, con-

sider the linear regression

ât = X′
t−1𝜶1 + M′

t−1𝜶2 + vt, (1.26)

where Mt−1 = (x̂2
t ,… , x̂s+1

t )′ for some s ≥ 1, and compute the least squares
residuals

v̂t = ât − X′
t−1�̂�1 − M′

t−1�̂�2

and the sum of squared residuals SSR1 =
∑T

t=p+1 v̂2
t of the regression. The basic

idea of the RESET test is that if the linear AR(p) model in Equation (1.25) is
adequate, then 𝜶1 and 𝜶2 of Equation (1.26) should be zero. This can be tested by
the usual F statistic of Equation (1.26) given by

F =
(SSR0 − SSR1)∕g

SSR1∕(T − p − g)
with g = s + p + 1, (1.27)

which, under the linearity and normality assumption, has an F distribution with
degrees of freedom g and T − p − g.

Remark: Because the variables x̂k
t for k = 2,… , s + 1 tend to be highly corre-

lated with Xt−1 and among themselves, principal components of Mt−1 that are not
co-linear with Xt−1 are often used in fitting Equation (1.26).

Keenan (1985) proposed a nonlinearity test for time series that uses x̂2
t only and

modifies the second step of the RESET test to avoid multicollinearity between x̂2
t

and Xt−1. Specifically, the linear regression (1.26) is divided into two steps. In step
2(a), one removes linear dependence of x̂2

t on Xt−1 by fitting the regression

x̂2
t = X′

t−1𝜷 + ut
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and obtaining the residual ût = x̂2
t − Xt−1𝜷. In step 2(b), consider the linear

regression

ât = ût𝛼 + vt,

and obtain the sum of squared residuals SSR1 =
∑T

t=p+1(ât − ût�̂�)2 =
∑T

t=p+1 v̂2
t

to test the null hypothesis 𝛼 = 0.

The F-test: To improve the power of Keenan’s and RESET tests, Tsay (1986)
used a different choice of the regressor Mt−1. Specifically, he suggested using
Mt−1 = vech(Xt−1X′

t−1), where vech(A) denotes the half-stacking vector of the
matrix A using elements on and below the diagonal only. For example, if p =
2, then Mt−1 = (x2

t−1, xt−1xt−2, x2
t−2)′. The dimension of Mt−1 is p(p + 1)∕2 for an

AR(p) model. In practice, the test is simply the usual partial F statistic for testing
𝜶 = 0 in the linear least squares regression

xt = X′
t−1𝝓 + M′

t−1𝜶 + et,

where et denotes the error term. Under the assumption that xt is a linear AR(p)
process, the partial F statistic follows an F distribution with degrees of freedom
g and T − p − g − 1, where g = p(p + 1)∕2. We refer to this F test as the F-test.
Luukkonen et al. (1988) further extended the test by augmenting Mt−1 with cubic
terms x3

t−𝑖 for 𝑖 = 1,… , p.

To demonstrate nonlinearity tests, consider the US quarterly unemployment
rates of Example 1.1. In this particular instance, both Keenan test and F-test con-
firm that the series is nonlinear. The F-test is referred to as the Tsay.test in the
TSA package.

R demonstration: Parametric tests.

> require(TSA)
> da=read.table("qunrate.txt",header=T)
> rate < da$rate
> Keenan.test(unrate)
$test.stat
[1] 7.428776
$p.value
[1] 0.006858382
$order
[1] 5
> Tsay.test(unrate)
$test.stat
[1] 2.626
$p.value
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[1] 0.00108
$order
[1] 5

Remark: The dimension of Mt−1 used in the F-test is p(p + 1)∕2, which can
be high when the order p is not small compared with the sample size T . In this
situation, the F-test might have low power in detecting nonlinearity. To improve
the F-test, one can use the idea of thresholding. Specifically, one constructs
Mt−1 using only those lagged variables in Xt−1 with t-ratio greater than some
threshold in modulus. To illustrate, consider the well-known Canadian Lynx data,
which is available in the TSA package. The series has 114 observations. With
log-transformation, an AR(11) is selected by the Keenan.test and Tsay.test

of the TSA package. In this particular case, the Keenan test shows that the log
series is nonlinear, but the F-test fails. This is not surprising because the F-test
fits 11(12)∕2 = 66 additional parameters whereas the effective sample size is
only 114 − 11 = 103. On the other hand, with threshold 1.645, the F-test also
confirms that the log series is nonlinear. Here the threshold 1.645 selects five
lagged variables to construct Mt−1 in the F-test.

R demonstration:

> require(TSA)
> data(lynx)
> y < log10(lynx)
> Keenan.test(y)
$test.stat
[1] 11.66997
$p.value
[1] 0.0009550016
$order
[1] 11
> Tsay.test(y)
$test.stat
[1] 1.316
$p.value
[1] 0.2256
$order
[1] 11
> require(NTS)
> F.test(y,thres=1.645)
$test.stat
[1] 1.971
$p.value
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[1] 0.02858
$order
[1] 11

Threshold test: If the alternative model under study is the self-exciting thresh-
old autoregressive (TAR) model shown in Example 1.1, one can derive specific
test statistics to increase the power of detecting nonlinearity. One of the specific
tests is the likelihood ratio statistic studied by Chan and Tong (1990) and Chan
(1990, 1991). The TAR(p) model considered can be written as

xt = 𝜙0 +
p∑
𝑖=1

𝜙𝑖xt−𝑖 + I(xt−d > r)

(
𝛽0 +

p∑
𝑖=1

𝛽𝑖xt−𝑖

)
+ at, (1.28)

where at is a sequence of independent and identically distributed Gaussian random
variables with mean zero and variance 𝜎2, 𝜙𝑖 and 𝛽j are real valued parameters,
d > 0 with xt−d being the threshold variable, r is the threshold, and I(xt−d > r) is
an indicator variable such that I(xt−d > r) = 1 if xt−d > r and = 0 otherwise. The
null hypothesis is H0 : 𝛽𝑖 = 0 for 𝑖 ∈ {0,… , p} and the alternative hypothesis is
Ha : 𝛽𝑖 ≠ 0 for some 𝑖. In Equation (1.28), we assume that the threshold r lies
inside a known bounded closed interval R̃ ⊆ R. For simplicity, we further assume
that d ≤ p. The likelihood ratio test statistic is then

𝜆 =
n
(
�̂�2

0 − �̂�2
)

�̂�2
, (1.29)

where n = T − p + 1 with T being the sample size,

�̂�2 = min
r∈R̃,𝜃,𝜙

⎡⎢⎢⎣
T∑

t=p+1

{
xt − 𝜙0 −

p∑
𝑖=1

𝜙𝑖xt−𝑖 − I(xt−d > r)

(
𝛽0 +

p∑
𝑖=1

𝛽𝑖xt−𝑖

)}2⎤⎥⎥⎦ ,

�̂�2
0 = min

𝜙

⎧⎪⎨⎪⎩
T∑

t=p+1

(
xt − 𝜙0 −

p∑
𝑖=1

𝜙𝑖xt−𝑖

)2⎫⎪⎬⎪⎭ .
The null hypothesis is rejected if and only if 𝜆 of Equation (1.29) is large. The lim-
iting properties of the test statistic 𝜆, however, are non-standard and more involved
because the threshold r is undefined under the null hypothesis H0. This is an issue
of nuisance parameter under the null hypothesis. Interested readers are referred
to Chan and Tong (1990). The percentage points of 𝜆 under the null hypothesis
have been investigated by Chan (1990). In the literature, it is common to assume
that R̃ = [v, u], where v and u are pre-specified real numbers with v < u. See, for
instance, Davis (1987) and Andrews and Ploberger (1994).
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Another specific threshold nonlinearity test is to transform the testing prob-
lem into a change point detection problem. The transformation is carried out via
the arranged autoregression. See Tsay (1989, 1998) and the references therein.
Specifically, the arranged autoregression transfers the TAR model under the alter-
native hypothesis Ha into a model-change problem with the threshold r being the
change point. To see this, the TAR model in Equation (1.28) says that xt follows
essentially two linear models depending on whether xt−d < r or xt−d ≥ r. For a
realization of T data points, say {xt}

T
t=1, the threshold variable xt−d can assume

values {x1,… , xT−d}. Let x(1) ≤ x(2) ≤ ⋯ ≤ x(T−d) be the ordered statistics of
{xt}

T−d
t=1 . The TAR model can then be written as

x(j)+d = 𝜃0 +
p∑
𝑖=1

𝜃𝑖x(j)+d−𝑖 + a(j)+d, j = 1,… , T − d, (1.30)

where 𝜃𝑖 = 𝜙𝑖 if x(j) ≤ r, and 𝜃𝑖 = 𝜙𝑖 + 𝛽𝑖 if x(j) > r, for 𝑖 = 0,… , p. Conse-
quently, the threshold r is a change point for the linear regression in Equation
(1.30), and we refer to Equation (1.30) as an arranged autoregression (in increas-
ing order of the threshold variable xt−d). Note that the arranged autoregression in
Equation (1.30) does not alter the dynamic dependence of xt on xt−𝑖 for 𝑖 = 1,… , p
because x(j)+d still depends on x(j)+d−𝑖 for 𝑖 = 1,… , p. What is done is simply to
present the TAR model in the threshold space instead of in the time space. That
is, the equation with a smaller xt−d appears before that with a larger xt−d. The
threshold test of Tsay (1989) is obtained as follows.

� Step 1: Fit Equation (1.30) using j = 1,… , m, where m is a pre-specified
positive integer (e.g., 30). Denote the least squares estimates of 𝜃𝑖 by �̂�𝑖,m,
where m denotes the number of data points used in estimation.

� Step 2: Compute the predictive residual

â(m+1)+d = x(m+1)+d − �̂�0,m −
p∑
𝑖=1

�̂�𝑖,mx(m+1)+d−𝑖

and its standard error. Let ê(m+1)+d be the standardized predictive residual.

� Step 3: Use the recursive least squares method to update the least squares
estimates to �̂�𝑖,m+1 by incorporating the new data point x(m+1)+d.

� Step 4: Repeat Steps 2 and 3 until all data points are processed.

� Step 5: Consider the linear regression of the standardized predictive residual

ê(m+j)+d = 𝛼0 +
p∑
𝑖=1

𝛼𝑖x(m+j)+d−𝑖 + vt, j = 1,… , T − d − m (1.31)



JWST902-c01 JWST902-Tsay September 4, 2018 7:31 Printer Name: Trim: 229mm × 152mm

1.4 NONLINEARITY TESTS 37

and compute the usual F statistic for testing 𝛼𝑖 = 0 in Equation (1.31) for
𝑖 = 0,… , p. Under the null hypothesis that xt follows a linear AR(p) model,
the F ratio has a limiting F distribution with degrees of freedom p + 1 and
T − d − m − p.

We refer to the resulting F test as a Tar-F test. The idea behind the test is that
under the null hypothesis there is no model change in the arranged autoregression
in Equation (1.30) so that the standardized predictive residuals should be close to
iid with mean zero and variance 1. In this case, they should have no correlations
with the regressors x(m+j)+d−𝑖. For further details, including formulas for a recur-
sive least squares method and some simulation study on performance of the Tar-F
test, see Tsay (1989). The Tar-F test avoids the problem of nuisance parameters
encountered by the likelihood ratio test. It does not require knowing the threshold
r. It simply tests that the predictive residuals have no correlations with regressors
if the null hypothesis holds. Therefore, the test does not depend on knowing the
number of regimes in the alternative model. Yet the Tar-F test is not as powerful as
the likelihood ratio test if the true model is indeed a two-regime TAR model with
Gaussian innovations.

The likelihood ratio test for a two-regime Gaussian TAR model is available via
the command tlrt of the TSA package, whereas the Tar-F test is available via the
command thr.test of the NTS package. For the US quarterly unemployment
rates of Example 1.1, both tests detect nonlinearity with p = 5 and d = 5 and
default options. Details are given below.

R demonstration: Threshold tests.

> da < read.table("qunrate.txt",header=T)
> unrate < da$rate
> require(NTS)
> require(TSA)
> thr.test(unrate,p=5,d=5)
SETAR model is entertained
Threshold nonlinearity test for (p,d): 5 5
Fratio and pvalue: 2.849921 0.01081263
> tlrt(unrate,p=5,d=5)
$percentiles
[1] 24.9 75.1
$test.statistic

33.028
$p.value

0.0003066953
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1.5 EXERCISES

1.1 Consider the global land and ocean temperature anomalies from January
1880 to May 2017. The monthly data are available from the National Oceanic
and Atmospheric Administration (NOAA) at www.ncdc.noaa.gov and are in
the file globaltemp18802017.csv. The data are in degrees Celsius and
the base period is 1901–2000. The temperature anomalies show an upward
trend so consider the change series, i.e. the first difference. Is the differenced
series nonlinear? Perform some tests and draw a conclusion. Does the series
show threshold nonlinearity? Why?

1.2 Consider the daily log returns of the exchange-traded fund for the S&P 500
index with tick symbol SPY from January 3, 2007 to June 30, 2017. Daily
log returns denote the first difference of log daily closing prices. The first
column of the file SPY0717.txt contains the log return. Is the return series
nonlinear? Perform some tests, including the BDS test to draw a conclusion.

1.3 Asset return series tend to exhibit conditional heteroscedasticity. The
GARCH models are often used to handle conditional heteroscedasticity.
Consider the SPY daily log returns of previous problem. The second col-
umn of the file SPY0717.txt shows the standardized residuals of a fitted
AR(1)-GARCH(1,1) model with standardized Student-t innovations. Does
the standardized residual series consist of independent and identically dis-
tributed random variables? Why?

1.4 Consider the grow rate series (first difference of the log index) of the US
monthly producer price index from February 1913 to August 2017. The
data can be obtained from FRED (PPIACO, 1982 index=100, not season-
ally adjusted). The data are also in the file PPIACO.csv. Is the growth rate
series linear? Perform some nonlinearity tests to draw a conclusion.

1.5 Consider again the growth rate series of the US monthly producer price index
of the prior problem. Let xt be the growth rate series. Use the fGarch pack-
age to fit the model:

require(fGarch)
m1 < garchFit( arma(3,2)+garch(1,1),data=x_t,trace=F,

cond.dist="std")
rt < residuals(m1,standardize=T)

The rt denotes the standardized residuals. Apply the McLeod–Li test to
detect any nonlinearity in the rt series and apply the BDS test to check
whether the rt series consists of iid random variables.
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