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Probability

The mathematical foundation upon which mathematical statistics and likeli-
hood inference are built is probability theory. Modern probability theory is
primarily due to the foundational work of the Russian mathematician Andrei
Nikolaevich Kolmogorov (1903–1987). Kolmogorov published his treatise on
probability in 1933 [1], which framed probability theory in a rigorous math-
ematical framework. Kolmogorov’s work provided probability theory with an
axiomatic mathematical structure that produces a consistent and coherent the-
ory of probability. Specifically, Kolmogorov’s structure is based on measure
theory, which deals with assigning numerical values to sets (i.e. measuring a
set) and the theory of integration and differentiation.

1.1 Sample Spaces, Events, and 𝝈-Algebras

The structure under which probabilities are relevant and can be assigned in
a consistent and coherent fashion requires a probability model consisting of a
chance experiment, the collection of all possible outcomes of the chance exper-
iment, and a function that assigns probabilities to collections of outcomes of the
chance experiment.

Definition 1.1 A chance experiment is any task for which the outcome of the
task is unknown until the task is actually performed.

Experiments where the outcome is known before the experiment is actually
performed are called deterministic experiments and are not interesting with
regard to probability. Probability theory, probability assignments, and statistics
only apply to chance experiments. The set of possible outcomes of a chance
experiment is called the sample space, and the sample space defines one com-
ponent of a probability model.
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2 1 Probability

Definition 1.2 The sample space associated with a chance experiment is the
set of all possible outcomes of a chance experiment. The sample space will be
denoted by Ω.

The sample space consists of the outcomes that are considered feasible and
interesting. Probabilities can only be assigned to outcomes or subsets of out-
comes in the sample space.

Example 1.1 Suppose that a chance experiment consists of flipping a two-
sided coin with heads on one side and tails on the other side. The most
commonly used sample space is Ω = {Heads, Tails}; however, another pos-
sible sample space that could be used is Ω′ = {heads, tails, edge}; these two
sample spaces produce two different probability models for the same chance
experiment. As long as Kolmogorov’s measure theoretic approach is used,
both probability models will produce consistent and coherent probability
assignments.

Chance experiments cover a wide range of everyday tasks such as dealing a
hand of cards, forecasting weather, driving in excess of the speed limit at the
risk of getting a speeding ticket, and buying a lottery ticket. In each of these
cases there is a chance experiment where the outcome is unknown until the
experiment is actually completed.

Example 1.2 Suppose that a chance experiment consists of weighing a brown
trout randomly selected from the Big Hole River in Montana. A reasonable
sample space for this chance experiment is Ω = (0, 50] since the largest known
brown trout to come from the river is less than 50 lb. If the upper limit on the
weight of a Big Hole brown trout is unknown, it would also be reasonable to
useΩ = (0,∞) for the sample space. Choosing the probability assignment takes
care of probabilities for likely and unlikely values of the weight of a Big Hole
River brown trout.

Note that in many chance experiments, the limits of the sample space will be
unknown, and in this case, the sample space can be taken to be an infinite length
subset of ℝ. The sample space is only the list of possible outcomes, while the
choice of the function used to make the probability assignments controls the
probabilities of the values in the sample space. The three components required
of a probability model are the sample space, a collection of subsets of the sample
space for which probabilities will be assigned, and the function used to assign
the probabilities to subsets of the sample space.

Under Kolmogorov’s probability structure, not all subsets of the sample
space can be assigned probabilities. The collection of subsets of the sample
space that can be assigned probabilities must have a particular structure so
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1.1 Sample Spaces, Events, and 𝜎-Algebras 3

that the probability assignments are coherent and consistent. In particular,
the collection of subsets of Ω that can be assigned probabilities must be a
𝜎-algebra.

Definition 1.3 Let  be a collection of events of Ω.  is said to be a 𝜎-algebra
of events if and only if

i) Ω ∈ .
ii) Ac ∈  whenever A ∈ .

iii)
∞⋃

i=1
Ai ∈  whenever Ai ∈ , ∀i.

A subset of Ω that is in a 𝜎-algebra associated with Ω is called an event.

Definition 1.4 An event A of a sample space Ω is any subset in a 𝜎-algebra
associated with Ω. An event A is said to have occurred when the chance exper-
iment results in an outcome in A.

A 𝜎-algebra associated with a sample space Ω contains the only events
that probabilities can be assigned to. There are many 𝜎-algebras of subsets
associated with a sample space (see Example 1.3); however, the appropriate
𝜎-algebra must be chosen so that it is large enough to contain all of the
relevant events to be considered. It is important to note that in order to have
a consistent and coherent probability assignment, not all events of Ω can be
assigned probabilities.

Example 1.3 Examples of 𝜎-algebras associated with a sample space Ω
include the following:

1) The trivial 𝜎-algebra0 = {∅,Ω}. This is the smallest 𝜎-algebra possible and
not very useful for a probability model.

2) 1 = {∅,A,Ac,Ω}, where A is a subset of Ω. This is the smallest 𝜎-algebra
that includes the event A.

3) The Borel 𝜎-algebra, which is the smallest 𝜎-algebra containing all of the
open intervals ofℝ. The Borel 𝜎-algebra can only be used when the elements
of Ω are real numbers, and in this case, it is a commonly used 𝜎-algebra.

The 𝜎-algebra of events associated with Ω will also include all of the compound
events that can constructed using the basic set operations intersection, union,
and complementation. The definitions for the compound events are given in
Definitions 1.5–1.7.

Definition 1.5 Let A and B be events of Ω. The event formed by the inter-
section of the events A and B is denoted by A ∩ B and is defined to be A ∩ B =
{𝜔 ∈ Ω ∶ 𝜔 ∈ A and 𝜔 ∈ B}.
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Definition 1.6 Let A and B be events of Ω. The event formed by the union of
the events A and B is denoted by A ∪ B and is defined to be A ∪ B = {𝜔 ∈ Ω ∶
𝜔 ∈ A or 𝜔 ∈ B}.

Definition 1.7 Let A be an event of Ω. The event that is the complement of
the event A is denoted by Ac and is defined to be Ac = {𝜔 ∈ Ω ∶ 𝜔 ∉ A}.

Note that union and intersection are commutative operations. That is,
A ∪ B = B ∪ A and A ∩ B = B ∩ A. Also, with complementation, (Ac)c = A.
Another set operation that is used to create a compound event is the set
difference. The set difference between two sets A and B consists of the elements
of A that are not elements of B.

Definition 1.8 Let A and B be events of Ω. The set difference A − B is defined
to be A − B = {𝜔 ∈ Ω ∶ 𝜔 ∈ A and 𝜔 ∉ B}.

Set difference is not a commutative operation, and A − B can also be writ-
ten as A ∩ Bc. The following example illustrates how compound events can be
created using the set operations union, intersection, complementation, and set
difference.

Example 1.4 Suppose that a card will be drawn from a standard deck of 52
playing cards. Then, the sample space is

Ω = {AH,… ,KH,AD,… ,KD,AC,… ,KC,AS,… ,KS},

where in the outcome XY , X is the denomination of the card (A, 2,… ,K ) and
Y is the suit of the card (H,D,C, S). Let A be the event that a heart is selected,
and let B be the event that an ace is selected. Then, A = {AH,… ,KH},
B = {AH,AD,AC,AS}, and

A ∩ B = {AH},
A ∪ B = {AH,… ,KH,AD,AC,AS},

Ac = {AD,… ,KD,AC,… ,KC,AS,… ,KS},
Bc = {2H,… ,KH, 2D,… ,KD, 2C,… ,KC, 2S,… ,KS},

A − B = {2H,… ,KH},
B − A = {AD,AC,AS}.

Events that share no common elements are called disjoint events or mutually
exclusive events.

Definition 1.9 Two events A and B of Ω are said to be disjoint when
A ∩ B = ∅.
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When two events A and B are disjoint, the chance experiment cannot result
in an outcome where both the events A and B occur. The events A and Ac are
always disjoint events as are A − B and B − A.

Compound events can also be constructed using the set operations inter-
section, union, and complementation on a family of sets, say F = {Ai ∶ i ∈ Δ},
where the index setΔ is a finite or countably infinite set. In most cases,Δwill be
taken to be a subset of ℕ, and the compound events created using intersection
and union are

𝜔 ∈
⋂
i∈Δ

Ai, if and only if 𝜔 ∈ Ai, ∀i ∈ Δ,

𝜔 ∈
⋃
i∈Δ

Ai, if and only if 𝜔 ∈ Ai for some i ∈ Δ.

Example 1.5 Suppose that a two-sided coin will be flipped until the first head
appears. Let Ai be the event that the first head appears on the ith flip, B be the
event that it takes at least two flips of the coin to observe the first head, and let
C be the event that it takes less than 10 flips to observe the first head. Then,

B =
∞⋃

i=2
Ai

and

C =
9⋃

i=1
Ai.

The set laws given in Theorems 1.1 and 1.2 can often be used to simplify the
computation of the probability of a compound event.

Theorem 1.1 (De Morgan’s Laws) If {Ai ∶ i ∈ Δ} is a family of events of Ω,
Δ is a subset of ℕ, and D ⊂ Δ, then

i)

(⋃
i∈D

Ai

)c

=
⋂
i∈D

Ac
i .

ii)

(⋂
i∈D

Ai

)c

=
⋃
i∈D

Ac
i .

Corollary 1.1 If A and B are events of Ω, then
i) (A ∪ B)c = Ac ∩ Bc.

ii) (A ∩ B)c = Ac ∪ Bc.

Note that the complement of a union is the intersection of the complements,
and the complement of an intersection is the union of the complements.
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Theorem 1.2 (Distributive Laws) If {Ai ∶ i ∈ Δ} is a family of events of Ω, Δ
is a subset of ℕ, and D ⊂ Δ, then

i) for any event B of Ω, B ∩

(⋃
i∈D

Ai

)
=
⋃
i∈D

(B ∩ Ai).

ii) for any event B of Ω, B ∪

(⋂
i∈D

Ai

)
=
⋂
i∈D

(B ∪ Ai).

In particular, Theorem 1.1 holds for D = {1, 2,… , n} or D = ℕ. That is,( n⋃
i=1

Ai

)c

=
n⋃

i=1
Ac

i and

( ∞⋃
i=1

Ai

)c

=
∞⋃

i=1
Ac

i

and ( n⋂
i=1

Ai

)c

=
n⋂

i=1
Ac

i and

( ∞⋂
i=1

Ai

)c

=
∞⋂

i=1
Ac

i

Similarly, Theorem 1.2 also holds for the finite set D = {1, 2,… , n} and the
infinite set D = ℕ. The simplest version of the Distributive Laws is given in
Corollary 1.2

Corollary 1.2 If A,B, and C are events of Ω, then
i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

ii) A ∪ (B ∩ C) = (A ∪ B) ∪ (A ∪ C).

A family  of disjoint events of a sample space Ω whose union is Ω is called a
partition. Partitions also can be used to simplify the computation of the prob-
ability of an event.

Definition 1.10 A collection of events  = {Ai ∶ i ∈ ℕ} is said to be a par-
tition of a sample space Ω if and only if

i)
∞⋃

i=1
Ai = Ω.

ii) Ai ∩ Aj = ∅, whenever i ≠ j.

A partition may consist of a finite number of events. That is, if {A1,A2,… ,An}
is a collection of disjoint events whose union is Ω, a partition  = {Aj ∶ j ∈ ℕ}
is formed by letting Aj = ∅ for j > n.

Example 1.6 Let A be an event in Ω. The simplest partition of a sample space
Ω is  = {A,Ac} since A ∪ Ac = Ω and A ∩ Ac = ∅.

Theorem 1.3 shows that a partition  can be used to partition an event B into
disjoint events whose union is the event B.
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Theorem 1.3 If  = {Ai ∶ i ∈ ℕ} is a partition of Ω, then for any event B of Ω.

B =
∞⋃

i=1
(B ∩ Ai).

Proof . Let {Ai ∶ i ∈ ℕ} be a partition of Ω and B an event of Ω. Then,

B = B ∩ Ω = B ∩

( ∞⋃
i=1

Ai

)
=

∞⋃
i=1

(B ∩ Ai).

Corollary 1.3 shows that an arbitrary event A of Ω can be used to partition
any other event B of Ω.

Corollary 1.3 If A and B are events of Ω, then B = (B ∩ A) ∪ (B ∩ Ac).

Problems

1.1.1 Determine a reasonable sample space when the chance experiment
involves
a) selecting a student at random and recording their GPA.
b) selecting an adult male at random and measuring their weight.
c) selecting an adult female at random and measuring their weight.
d) selecting a student at random and recording the color of their hair.
e) rolling two standard six-sided dice and summing the outcomes on

each die.
f ) selecting a person at random and recording their birthday.
g) selecting a student at random and recording how many credits they

are enrolled in.

1.1.2 Two numbers will be drawn at random and without replacement from
the numbers 1, 2, 3, 4, 5. Let A be the event that at least one even num-
ber is drawn in the two draws, and let B be the event that the sum of
the draws is equal to 4. Determine the outcomes in
a) sample space. b) A.
c) B. d) A ∩ B.
e) A ∪ B. f ) B − A.

1.1.3 Flip a two-sided coin four times. Let A be the event exactly two heads
are flipped and let B be the event at least one tail is flipped. Determine
the outcomes in
a) the sample space. b) A.
c) Ac. d) B.
e) A ∩ B. f ) A ∪ B.
g) A − B. h) B − A.



�

� �

�
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1.1.4 Draw a card at random from a standard deck of 52 playing cards. Let A
be the event that an ace is drawn, and let B be the event that a diamond
is drawn. Determine the outcomes in
a) the sample space. b) A.
c) B. d) Bc.

e) A ∩ B. f ) A ∪ B.
g) A − B. h) B − A.

1.1.5 Flip a two-sided coin until a head appears. Let A be the event the first
head is flipped on the fourth flip and let B be the event the first head is
flipped in less than five flips. Determine the outcomes in
a) A. b) B.
c) A ∩ B. d) A ∪ B.

1.1.6 Let A be an event of Ω. Show that (Ac)c = A.

1.1.7 Let A and B be events of Ω. If A ⊂ B, show that B = A ∪ (B − A).

1.1.8 Let A and B be events of Ω. Show that A ∪ B = A ∪ (B − A).

1.1.9 Let A and B be events of Ω. Show that A − B and B − A are disjoint
events.

1.1.10 Let A and B be disjoint events of Ω, and let C be any other event of Ω.
Show that A ∩ C and B ∩ C are disjoint events.

1.1.11 Let {Ai} be a countable collection of events of Ω with
∞⋃

i=1
Ai = Ω, and

let B1 = A1 and Bk = Ak −

(k−1⋃
i=1

Ai

)
for n ≥ 2. Show that {Bk} is a par-

tition of Ω.

1.1.12 Let Ω = ℝ and define Ai = [− 1
n
, n) for i ∈ ℕ. Determine

a)
10⋃

i=1
Ai. b)

10⋂
i=1

Ai.

c)
∞⋃

i=1
Ai. d)

∞⋂
i=1

Ai.
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1.1.13 Let Ω = ℝ+ and define Ai = ( 1
n
, 1 + 1

n
) for i ∈ ℕ. Determine

a)
20⋃

i=1
Ai. b)

20⋂
i=1

Ai.

c)
∞⋃

i=1
Ai. d)

∞⋂
i=1

Ai.

1.1.14 Show that {∅,A,Ac,Ω} is a 𝜎-algebra.

1.1.15 Show that if  is a 𝜎-algebra and A,B ∈ , then A ∩ B ∈ .

1.1.16 Let  be a 𝜎-algebra and let Ai ∈  for i ∈ ℕ. Show that
⋂∞

i=1 Ai ∈ .

1.1.17 Determine the smallest 𝜎-algebra that contains the events A and B.

1.2 Probability Axioms and Rules

The third component of a probability model is the probability function, which is
a set function whose domain is a 𝜎-algebra of events ofΩ. Kolmogorov’s mea-
sure theoretic approach to probability requires a probability function satisfying
the properties given in Definition 1.11.

Definition 1.11 (Kolmogorov’s Probability Function) Let Ω be the sample
space associated with a chance experiment, and let  be a 𝜎-algebra of events
of Ω. A set function P on  satisfying the following three properties is called a
probability function or a probability measure.

A1: P(Ω) = 1.
A2: P(A) ≥ 0 for every event A ∈ .
A3: If {Ai ∶ i ∈ ℕ} ⊂  is a collection of disjoint events, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The triple (Ω,,P) is called a probability space.

Conditions A1–A3 are known as Kolmogorov’s Axioms of Probability, and the
sets in the 𝜎-algebra  are the measurable sets and the only sets that can be
assigned probabilities. Theorem 1.4 reveals some of the basic consequences of
Kolmogorov’s Axioms.
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Theorem 1.4 Let (Ω,,P) be a probability space and let A,B ∈ .

i) P(∅) = 0.
ii) If A ⊂ B, then P(A) ≤ P(B).

iii) 0 ≤ P(A) ≤ 1.

iv) P

( n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai) when A1,A2,… ,An are disjoint events in .

Proof . Let (Ω,,P) be a probability space and let A,B ∈ .

i) Since Ω = Ω
∞⋃

i=1
∅, let A1 = Ω and Ai+1 = ∅ for i ∈ ℕ. Then, {Ai} is a collec-

tion of disjoint sets and

1 = P(Ω) = P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Axiom 3

= P(A1) +
∞∑

i=2
P(Ai) = 1 +

∞∑
i=2

P(Ai).

Thus,
∞∑

i=2
P(Ai) = 0 and since P(Ai) ≥ 0, ∀i ∈ ℕ. Hence, it follows that

P(Ai+1) = P(∅) = 0, ∀i ∈ ℕ.
ii) Since B = A ∪ (B − A) and A ∩ (B − A) = ∅, it follows that

P(B) = P(A ∪ (B − A)) = P(A) + P(B − A) ≥
⏟⏟⏟

P(B−A)≥0

P(A).

iii) This follows directly from parts (i) and (ii), since A ⊂ Ω and ∅ ⊂ A, it follows
that 0 = P(∅) ≤ P(A) ≤ P(Ω) = 1.

iv) The proof of part (iv) is left as an exercise.

Further consequences of Kolmogorov’s Axioms are given in Theorem 1.5. In
particular, the results given in Theorem 1.5 provide several useful rules for com-
puting probabilities.

Theorem 1.5 Let (Ω,,P) be a probability space and let A,B ∈ . Then,

i) P(Ac) = 1 − P(A).
ii) P(B) = P(B ∩ A) + P(B ∩ Ac).

iii) P(A − B) = P(A) − P(A ∩ B).
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iv) if A ⊂ B, then P(B − A) = P(B) − P(A).
v) P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

vi) if A is countable, say A = {𝜔i ∶ i ∈ ℕ}, then P(A) =
∑∞

i=1 P({𝜔i}).

Proof . Let (Ω,,P) be a probability space and let A,B ∈ .
i) Note that Ω = A ∪ Ac and A and Ac are disjoint events. Thus,

1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

since disjoint

.

Therefore, P(Ac) = 1 − P(A).
ii) From Corollary 1.3, B = (A ∩ B) ∪ (Ac ∩ B) and the events A ∩ B and Ac ∩ B

are disjoint. Thus,
P(B) = P[(A ∩ B) ∪ (Ac ∩ B)] = P(A ∩ B) + P(Ac ∩ B).

iii) The proof of part (iii) is left as an exercise.
iv) The proof of part (iv) is left as an exercise.
v) Since A ∪ B can be written as the disjoint union of A ∩ Bc,A ∩ B, and Ac ∩ B,

it follows that
P(A ∪ B) = P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B)

= P(A − B) + P(A ∩ B) + P(B − A).
Hence, by Theorem 1.5 part (iii), it follows that

P(A ∪ B) = P(A − B) + P(A ∩ B) + P(B − A)
= P(A) − P(A ∩ B) + P(A ∩ B) + P(B) − P(A ∩ B)
= P(A) + P(B) − P(A ∩ B).

vi) The proof of part (vi) is left as an exercise.

Examples 1.7 and 1.8 illustrate the use of Theorem 1.5 for computing proba-
bilities.

Example 1.7 Let (Ω,,P) be a probability space and let A,B ∈ . Suppose
that A and B are events of Ω with P(A) = 0.6, P(B) = 0.75, and P(A ∩ B) = 0.55.
Then,
1) P(Ac) = 1 − P(A) = 1 − 0.6 = 0.4.
2) P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.6 + 0.75 − 0.55 = 0.8.
3) P(A − B) = P(A) − P(A ∩ B) = 0.6 − 0.55 = 0.05.
4) P(Ac ∩ Bc) = P[(A ∪ B)c] = 1 − P(A ∪ B) = 1 − 0.8 = 0.2.
5) P(Ac ∪ B) = P(Ac) + P(B) − P(Ac ∩ B) = 0.4 + 0.75 − (0.75 − 0.55) = 0.95.
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Example 1.8 Suppose that 70% of the fishermen in Montana use fly fishing
gear, 40% use spin fishing gear, and 10% use both fly and spin fishing gear. The
probability that a fisherman in Montana uses fly fishing gear (F) but not spin
fishing gear (S) is

P(F − S) = P(F) − P(F ∩ S) = 0.70 − 0.10 = 0.60,

and the probability that a fisherman in Montana uses spin fishing gear but not
fly fishing gear is

P(S − F) = P(S) − P(S ∩ F) = 0.40 − 0.10 = 0.30.

Theorem 1.5 part (ii) is known as the Law of Total Probability. The Law of Total
Probability can be used to solve many probability problems, and in particular,
it is useful when there are two or more cases that must be considered when
computing the probability of an event. A generalized version of the Law of Total
Probability is given in Theorem 1.6.

Theorem 1.6 (General Law of Total Probability) Let (Ω,,P) be a proba-
bility space and let A ∈ . If Bi ∈ , ∀i ∈ ℕ and {Bi} is a partition of Ω, then,

P(A) =
∞∑

i=1
P(A ∩ Bi).

Proof . The proof of Theorem 1.6 follows directly from Theorem 1.3 and
axiom A3.

Note that Theorem 1.6 also works with a finite partition {B1,B2,… ,Bn} in
which case P(A) =

∑n
i=1 P(A ∩ Bi).

Example 1.9 Suppose that a game is played where two dice are rolled until
either a total of 6 or 7 is rolled. Let A be the event that a 6 is rolled before a 7.

Note that A =
∞⋃

i=1
(A ∩ Bi), where Bi = the game terminates on the ith roll.

Thus, the probability of event A can be computed using the General Law of
Total Probability with

P(A) =
∞∑

i=1
P(A ∩ Bi).

This example will be revisited in a later section after further development of
the rules of probability.

Example 1.10 Suppose that two marbles are drawn at random and without
replacement from an urn containing 5 white marbles, 9 red marbles, and
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11 black marbles. Let A be the event that two marbles of the same color
are selected, W be the event that the first marble selected is white, R be the
event that the first marble selected is red, and B be the event that the first
marble selected is black. Then, W ,R, and B partition the sample space, and the
probability of drawing two marbles of the same color is

P(A) = P(A ∩ W ) + P(A ∩ R) + P(A ∩ B).

Theorem 1.7 (Boole’s Inequality) If {Ai} is a collection of events in , then

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P(Ai).

Proof . Let {Ai} be a collection of events in  and let

Bi = Ai −

( i−1⋃
j=1

Ai

)

Then,
∞⋃

i=1
Ai =

∞⋃
i=1

Bi, Bi ∩ Bj = ∅ for i ≠ j, and Bi ⊂ Ai, ∀i. Hence,

P

( ∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

P(Bi) ≤
∞∑

i=1
P(Ai)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

since Bi⊂Ai

.

Boole’s Inequality is also often referred to as Bonferroni’s Inequality and is
sometimes used when performing multiple comparisons in a hypothesis testing
scenario.

Example 1.11 Suppose that five hypothesis tests will be carried out with each
test having a probability of false rejection equal to 0.01. Let Ai be the event that
the ith test makes a false rejection. Then, by Boole’s Inequality, the probability
of making at least one false rejection in the five hypothesis tests is

P

( 5⋃
i=1

Ai

)
≤

5∑
i=1

P(Ai) = 0.05.

Using Boole’s Inequality is one way to protect against making false rejections
in a multiple comparison setting and can be generalized to handle any number
of hypothesis tests. For example, if the goal is to have the overall probability
of making at least one false rejection less than 𝛼 when n hypothesis tests are
performed, then by taking P(Ai) =

𝛼

n
, the overall chance of making one or more

false rejections is less than 𝛼. This procedure is referred to as the Bonferroni
Multiple Comparison Procedure.
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Problems

1.2.1 Suppose that P(A) = 0.6, P(B) = 0.75, and P(A ∩ B) = 0.55. Determine
a) P(Ac). b) P(Bc).
c) P(A ∪ B). d) P(A − B).
e) P(Ac ∩ Bc). f ) P(Ac ∪ Bc).
g) P(Ac ∪ B). h) P[(A − B) ∪ (B − A)].

1.2.2 Suppose that A ⊂ B, P(A) = 0.4, and P(B) = 0.6. Determine
a) P(Ac). b) P(Bc).
c) P(A ∩ B). d) P(A ∪ B).
e) P(B − A). f ) P(A − B).

1.2.3 Suppose that A and B are disjoint events with P(A) = 0.5 and P(B) =
0.35. Determine
a) P(A ∩ B). b) P(A ∪ B).
c) P(B − A). d) P(A − B).
e) P[(A ∪ B)c]. f ) P(Ac ∩ Bc).

1.2.4 Suppose that P(B) = 0.6, P(A ∩ B) = 0.45, and P(A − B) = 0.25.
Determine

a) P(B − A). b) P(A).
c) P(A ∪ B). d) P(Ac ∩ Bc).

1.2.5 Suppose that Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and P({i}) = i
55

for i ∈ Ω.
If a number is drawn at random, determine the probability that
a) an even number is drawn.
b) a multiple of 3 is drawn.
c) a number less than 5 is drawn.
d) a prime number is drawn.

1.2.6 A large computer sales company reports that 80% of their computers
are sold with a DVD drive, 95% with a CD drive, and 75% with both.
Determine the probability that
a) a computer without a DVD drive is sold.
b) a computer with a DVD drive or a CD drive is sold.
c) a computer with a DVD drive but not a CD drive is sold.
d) a computer with a DVD drive or a CD drive but not both is sold.
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1.2.7 Mr. Jones watches the 6 p.m. news 50% of the time, he watches the 11
p.m. news 75% of the time, and watches both the 6 p.m. and 11 p.m.
news 28% of the time. Determine the probability that
a) Mr. Jones watches either the 6 p.m. or 11 p.m. news.
b) Mr. Jones watches either the 6 p.m. or 11 p.m. news, but not both.
c) Mr. Jones watches neither the 6 p.m. nor 11 p.m. news.
d) Mr. Jones watches the 6 p.m. but not the 11 p.m. news.
e) Mr. Jones watches the 11 p.m. but not the 6 p.m. news.

1.2.8 Suppose that the probability of a two-child family having two male chil-
dren is 0.23, having a male child first followed by a female child is 0.25,
having a female child first followed by a male child is 0.25, and having
two female children is 0.27. Determine the probability that a two-child
family has
a) at least one male child.
b) at least one female child.
c) a male first child.
d) a female second child.

1.2.9 Airlines A and B have 9 a.m. flights from San Francisco to Seattle. Sup-
pose that the probability that airline A’s flight is fully booked is 0.80, the
probability that airline B’s flight is fully booked is 0.75, and the proba-
bility that both airlines 9 a.m. flights to Seattle are fully booked is 0.68.
Determine the probability that
a) airline A or airline B has a fully booked flight.
b) neither airline A nor airline B has a fully booked flight.
c) airline A has a fully booked flight but airline B does not.

1.2.10 Suppose that A, B, and C are disjoint events with P(A) = 0.1, P(B) =
0.25, and P(C) = 0.6. Determine
a) P(A ∩ B ∩ C). b) P(A ∪ B ∪ C).

1.2.11 Suppose that A, B, and C are events with A ⊂ B ⊂ C. If P(A) =
0.1,P(B) = 0.25, and P(C) = 0.6, determine
a) P(A ∩ B ∩ C). b) P(A ∪ B ∪ C).
c) P(C − A). d) P(C − B).

1.2.12 Suppose that P(A) = 0.25, P(B − A) = 0.3, and P[C − (A ∪ B)] = 0.1.
Determine
a) P(A ∪ B). b) P(A ∪ B ∪ C).
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1.2.13 Prove: If A and B are events, then
a) the probability that event A or event B occurs, but not both, is

P(A ∪ B) − P(A ∩ B).
b) the probability that exactly one of the events A or B occurs is P(A) +

P(B) − 2P(A ∩ B).
c) P(A ∩ B) ≤ P(A ∪ B) ≤ P(A) + P(B).

1.2.14 Prove: If A,B, and C are events, then
a) P(A ∪ B ∪ C) ≤ P(A) + P(B) + P(C).
b) P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) −

P(B ∩ C) + P(A ∩ B ∩ C).

1.2.15 Prove Theorem 1.4 part (iv).

1.2.16 Prove
a) Theorem 1.5 part (iii).
b) Theorem 1.5 part (iv).
c) Theorem 1.5 part (vi).

1.2.17 Suppose that Ω = ℕ and for i ∈ ℕ, P({i}) = k
3i , where k is an unknown

constant. Determine the value of
a) k. b) P({𝜔 ∈ ℕ ∶ 𝜔 ≤ 5}).

1.2.18 LetΩ = ℕ and for i ∈ ℕ, let Ai = {𝜔 ∈ ℕ ∶ 𝜔 ≤ i}. If P(Ai) = 1 −
(

1
2

)i
,

determine
a) P(Ai − Aj) for i, j ∈ ℕ and i > j.
b) P({i}) for i ∈ ℕ.

1.2.19 Let Ω = (0,∞) and for t ∈ (0,∞), let At = {𝜔 ∈ ℕ ∶ 𝜔 ≥ t}. If
P(Ai) = e−t , determine P(As − At) for t, s ∈ (0,∞) and t > s.

1.3 Probability with Equally Likely Outcomes

When Ω is a finite set and each of the outcomes in Ω has the same chance
of occurring, then the outcomes in Ω are said to be equally likely outcomes.
When the outcomes of the chance experiment are equally likely, computing the
probability of any event A is often simple. In particular, if N(A) is the number
of outcomes in event A and N(Ω) = N , then P(A) = N(A)

N
.

Theorem 1.8 If Ω is a finite sample space with N possible outcomes, say Ω =
{𝜔1, 𝜔2,… , 𝜔N}, and the outcomes in Ω are equally likely to occur, then the
probability of an event A is P(A) = N(A)

N
.



�

� �

�

1.3 Probability with Equally Likely Outcomes 17

Proof . Follows directly from Theorem 1.5 part (vi) with each outcome having
equal probability 1

N(Ω)
.

Equally likely outcomes often arise when sampling at random from a finite
population. For example, when drawing a card at random from a standard
deck of 52 playing cards, each of the 52 cards has an equal chance of being
selected. Other common chance experiments in which equally likely outcomes
arise include flipping a fair coin n times, rolling n fair dice, selecting n balls at
random from an urn, randomly drawing lottery numbers, dealing cards from a
well shuffled deck, and choosing names at random out of a hat.

Examples 1.12–1.14 illustrate probability computations where the sample
space contains a finite number of equally likely outcomes.

Example 1.12 A card will be drawn at random from a standard deck of 52
playing cards. The sample space associated with this chance experiment is

Ω = {AH, 2H,… ,KH,AD, 2D,… ,KD
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

red cards

,AS, 2S,… ,KS,AC, 2C,… ,KC
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

black cards

}.

Thus, N(Ω) = 52. Let A be the event that an ace is drawn and B be the event
that a black card is drawn. Then, P(A) = 4

52
, P(B) = 26

52
,P(A ∩ B) = 2

52
, and

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 4
52

+ 26
52

− 2
52

= 28
52

.

Theorem 1.9 If a chance experiment consists of repeating a task that has N
possible outcomes n times, then N(Ω) = Nn.

Thus, when a chance experiment consists of drawing twice, at random
and with replacement, from a collection of N objects, there are N2 possible
outcomes inΩ. For example, if two cards are drawn at random and with replace-
ment from a standard deck of 52 playing cards, then there are 522 = 2704
possible outcomes in Ω.

Example 1.13 If a chance experiment consists of flipping a fair coin 10 times,
then there are 210 = 1024 possible outcomes in Ω. If A is the event that at least
one of the flips is a head, then

P(A) = 1 − P(Ac) = 1 − P(0 heads are flipped) = 1 − 1
1024

= 1023
1024

.

Theorem 1.10 When a chance experiment consists of drawing at random and
without replacement twice from a collection of N objects, there are N(N − 1)
outcomes in Ω.

For example, if two cards are to be drawn at random and without replace-
ment from a standard deck of 52 playing cards, then ℕ(Ω) = 52 × 51 = 2652.
Theorem 1.10 can be generalized to a chance experiment consisting of drawing
n times, at random and without replacement, from a collection of N objects.
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In this case, N(Ω) = N(N − 1) · · · (N − n + 1). For example, when three objects
are drawn at random and without replacement from a collection of 10 objects,
the sample space for this chance experiment will contain 10 × 9 × 8 = 720
outcomes.

Example 1.14 Draw two numbers at random and without replacement from
the numbers 1, 2, 3, 4, and 5. The sample space associated with this chance
experiment contains 20 equally likely outcomes. The event that at least one
number greater than or equal to 4 is chosen comprised the outcomes (4,1), (1,4),
(4,2), (2,4), (4,3), (3,4),(4,5), (5,4), (5,3), (3,5), (5,2), (2,5), (5,1), and (1,5). Thus,

P(at least one number greater than or equal to 4 is chosen) = 14
20

.

Probabilities concerning chance experiments with equally likely outcomes
will be considered in more detail in Section 1.6.

Problems

1.3.1 Draw a card at random from a standard deck of 52 playing cards. Let
A be the event that an ace is drawn, B be the event that a black card is
drawn, C be the event that a club is drawn, and K be the event that a
king is drawn. Determine
a) P(A ∩ B). b) P(A ∪ B).
c) P(A ∩ C). d) P(A ∪ K).
e) P(A ∩ (B ∪ C)). f ) P(A ∪ B ∪ K).

1.3.2 A fair six-sided die is to be rolled twice. Determine
a) the sample space associated with this chance experiment.
b) the probability that the total is 5.
c) the probability that the absolute value of the difference between the

two rolls is 2.
d) the probability that the sum of the two rolls is even.

1.3.3 A fair die will be rolled and then a fair coin will be flipped twice.
Determine the
a) probability that an even number is rolled and two heads are flipped.
b) probability that a 1 is rolled and two tails are flipped.
c) probability that a 1 is rolled and at least one tail is flipped.

1.3.4 Three fair dice will be rolled. Determine the
a) number of outcomes in Ω.
b) probability that exactly two sixes will be rolled.
c) probability that no sixes will be rolled.
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1.3.5 A fair coin will be flipped five times. Determine the
a) number of outcomes in Ω.
b) probability that exactly two heads will be flipped.
c) probability that fewer than two heads will be flipped.
d) probability that at least two heads will be flipped.

1.3.6 Two marbles will be drawn at random and without replacement from
an urn containing three white marbles, one blue marble, and one red
marble. Determine the
a) number of outcomes in Ω.
b) probability that only white marbles are drawn.
c) probability that no white marbles are drawn.
d) probability that the blue marble is drawn.

1.3.7 Determine the number of outcomes in Ω when the chance experiment
consists of drawing
a) three objects at random and without replacement from a collection

of 12 objects.
b) three objects at random and with replacement from a collection of

12 objects.

1.3.8 Determine the number of outcomes in Ω when the chance experiment
consists of drawing
a) four cards at random and with replacement from a standard deck

of 52 playing cards.
b) four cards at random and without replacement from a standard

deck of 52 playing cards.

1.3.9 Let Ω contain N equally likely outcomes. Show that
a) P(Ac) = N−N(A)

N
. b) P(A − B) = N(A)−N(A∩B)

N
.

1.4 Conditional Probability

When probability theory is applied to real-world problems, it is often the
case that an event A being studied is dependent on several other factors. For
example, when a two-sided coin is flipped, the probability of flipping a head
depends on whether or not the coin is a fair coin or a coin biased in favor of
heads or tails. Without the knowledge of the type of coin being flipped, the
probability of heads must be computed unconditionally. On the other hand,
when the type of coin being flipped is known, the probability of flipping a head
can be conditioned on this knowledge.

In general, a statistical model is built to explain how a set of explanatory
variables X1,X2,… ,Xp are related to a response variable Y , and conditional
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probability models form the foundation of statistical modeling. For example, a
researcher studying the incidence of lung cancer may be interested in the inci-
dence of lung cancer among individuals who are long-term smokers or have
been exposed to asbestos, rather than the unconditional rate of lung cancer
among the general population, because the incidence of lung cancer would be
expected to be higher for long-term smokers than it would be for the general
population.

A probability computed utilizing known information about a chance experi-
ment is called a conditional probability.

Definition 1.12 Let (Ω,,P) be a probability space, and let A and B be events
in . The conditional probability of the event A given the event B, denoted by
P(A|B), is defined to be

P(A|B) = P(A ∩ B)
P(B)

provided P(B) > 0. The conditional probability P(A|B) is said to be undefined
when P(B) = 0.

P(A|B) is stated as “the probability of the event A, given the event B has or
will occur” or simply as “the conditional probability of event A given the event
B.” The event B is the known condition upon which the probability of A is com-
puted, and the event B serves as the conditional sample space. That is, since
B is assumed to have or will occur, only the outcomes in B are relevant to the
chance experiment and the conditional probability that event A occurs. Thus,
given the event B, the event A occurs only when the chance experiment results
in an outcome in A ∩ B.

Example 1.15 Suppose that a fair coin is flipped twice with Ω = {HH,HT ,

TH,TT} and each of the outcomes in Ω is equally likely. Let B be the event that
at least one head has been flipped, and let A be the event that exactly two heads
are flipped. Consider P(A|B) = P(A∩B)

P(B)
.

Since there is only one outcome in A ∩ B, namely HH , and B contains the
outcomes HH,HT , and TH , it follows that

P(A|B) = P(A ∩ B)
P(B)

=
1
4
3
4

= 1
3
.

Note that P(A) unconditionally is 1
4
; however, given the knowledge that at

least one head was flipped, there is a larger chance that A will occur.

The probability rules for conditional probability are similar probability
rules given in Section 1.2. Several conditional probability rules are given in
Theorem 1.11.
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Theorem 1.11 Let (Ω,,P) be a probability space and let A,B,C ∈ . Then,

i) 0 ≤ P(A|B) ≤ 1.
ii) P(B|B) = 1.

iii) P(Ac|B) = 1 − P(A|B).
iv) P(A ∪ B|C) = P(A|C) + P(B|C) − P(A ∩ B|C).
v) P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B).

Proof . Let (Ω,,P) be a probability space and let A,B,C ∈ .

i) First, P(A|B) = P(A ∩ B)
P(B)

and A ∩ B ⊂ B. Thus, it follows that 0 ≤ P(A ∩
B) ≤ P(B), and hence, 0 ≤ P(A|B) ≤ 1.

ii) P(B|B) = P(B ∩ B)
P(B)

= P(B)
P(B)

= 1.
iii) Note that,

P(Ac|B) = P(Ac ∩ B)
P(B)

= P(B) − P(A ∩ B)
P(B)

= P(B)
P(B)

− P(A ∩ B)
P(B)

= 1 − P(A|B).
iv) The proof of (iv) is left as an exercise.
v) The proof of (v) is left as an exercise.

The result given in Theorem 1.11(v) is known as the Multiplication Law and
can be generalized to conditional probabilities involving than more than two
events. For example, with three events A,B, and C, the Multiplication Law is
P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A ∩ B).

The Multiplication Law is often used in computing probabilities in chance
experiments involving sampling without replacement from a collection of N
objects, such as the chance experiment in Example 1.16.

Example 1.16 Suppose that an urn contains 8 red, 10 blue, and 7 green mar-
bles. Three marbles will be drawn from the urn at random and without replace-
ment. The probability of selecting three red marbles consists of selecting a red
marble on the first draw, say event R1; a red marble on the second draw, say
event R2; and selecting a red marble on the third draw, say event R3. Thus, by
the Multiplication Law,

P(R1 ∩ R2 ∩ R3) = P(R1) × P(R2|R1) × P(R2|R1 ∩ R2)

= 8
25

× 7
24

× 6
23

= 336
13 800

.

The Multiplication Law also provides an alternative form for the Law of Total
Probability, which is given in Theorem 1.12.
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Theorem 1.12 (Law of Total Probability) Let A and B be events. Then,

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

Proof . Let A and B be events. From Theorem 1.4,

P(B) = P(B ∩ A) + P(B ∩ Ac),

and by the Multiplication Law, P(B ∩ A) = P(B|A)P(A) and P(B ∩ Ac) =
P(B|Ac)P(Ac). Thus,

P(B) = P(B ∩ A) + P(B ∩ Ac) = P(B|A)P(A) + P(B|Ac)P(Ac).

Example 1.17 Draw two cards at random and without replacement from a
standard deck of 52 playing cards. Because the second draw is dependent on the
outcome of the first draw, the Law of Total Probability will be used to determine
the probability that an ace is drawn on the second draw, say event A2. Now, let
A1 be the event that an ace was selected on the first draw. Then, A1 and A1c

partition Ω, and by conditioning on the outcome of the first draw, it follows
that P(A2|A1) = 3

51
and P(A2|A1c) = 4

51
. Thus, by Theorem 1.12,

P(A2) = P(A1)P(A2|A1) + P(A1c)P(A2|A1c)

= 4
52

× 3
51

+ 48
52

× 4
51

= 4
52

.

Theorem 1.13 generalizes the conditional form of the Law of Total Probability
to partitions consisting of more than two events.

Theorem 1.13 (Generalized Law of Total Probability) Let {Bk ∶ k ∈ ℕ} be

a partition of Ω and let A ∈ . Then, P(A) =
∞∑

k=1
P(A|Bk)P(Bk).

Proof . The proof follows directly from Theorem 1.6 and the Multiplication
Law.

Note that the Generalized Law of Total Probability also applies to a finite par-

tition, say {B1,B2,… ,Bn}, ∀n ∈ ℕ, and in this case, P(A) =
n∑

k=1
P(A|Bk)P(Bk).

Example 1.18 Suppose that a town T is in a region of high tornado activity.
Let A be the event that a tornado hits town T , and let Bi be the event that there
are i ∈ 𝕎 tornadoes in town T ’s region during a tornado season. Suppose that
P(Bi) =

e−33i

i!
and P(A|Bi) = 1 − 1

2i . The probability that a tornado hits town T is
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P(A) =
∞∑

i=0
P(A|Bi)P(Bi) =

∞∑
i=0

(
1 − 1

2i

)
× e−33i

i!

=
∞∑

i=0

e−33i

i!
−

∞∑
i=0

e−33i

2ii!
= 1 − e−3

∞∑
i=1

(
3
2

)i

i!

= 1 − e−3e
3
2 = 1 − e−

3
2 = 0.777.

The Generalized Law of Total Probability shows that P(A) can be computed
when a partition {Bi} is available and P(Bi) and P(A|Bi) are known for each of
the events in the partition. Theorem 1.14, Bayes’ Theorem, provides the solution
to the inverse problem that concerns the probability of Bi|A.

Theorem 1.14 (Bayes’ Theorem) Let {Bk ∶ k ∈ ℕ} be a partition of Ω and let
A ∈ , then for i ∈ ℕ

P(Bi|A) = P(A|Bi)P(Bi)∑∞
k=1 P(A|Bk)P(Bk)

.

Proof . Let {Bk} be a partition of Ω and let A ∈ . Let i ∈ ℕ be arbitrary but
fixed, then

P(Bi|A) = P(Bi ∩ A)
P(A)

=

by the Multiplication Law
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

P(A|Bi)P(Bi)
P(A)

=
P(A|Bi)P(Bi)∑∞

k=1 P(A|Bk)P(Bk)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

by the Generalized Law of Total Probability

.

Note that the Generalized Law of Total Probability and Bayes’ Theorem also
work with finite partitions. For example, using B and Bc to partition Ω, Bayes’
Theorem becomes P(B|A) = P(A|B)P(B)

P(A|B)P(A)+P(A|Bc)P(Bc)
.

Example 1.19 Suppose that a new and rare infectious disease has been diag-
nosed. It is known that this new disease is contracted with probability P(D) =
0.0001, which is referred to as the prevalence probability. Suppose that a diag-
nostic test has been developed to diagnose this disease, and given that a person
has the disease, the probability that the test is positive is P(+|D) = 0.99; P(+|D)
is called the sensitivity of the test and measures the ability of the test to cor-
rectly diagnose that an individual does have the disease. Also, suppose that
given a person does not have the disease, the probability that the test is pos-
itive is P(+|Dc) = 0.02; the specificity of the test is P(−|Dc) = 1 − P(+|Dc) and
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measures the ability of the test to correctly diagnose that an individual does not
have the disease.

The probability that a person has the disease given a positive test result is

P(D|+) = P(+|D)P(D)
P(+|D)P(D) + P(+|Dc)P(Dc)

= 0.0001 × 0.99
0.0001 × 0.99 + 0.9999 × 0.02

= 0.004 926.

Example 1.20 Suppose that three silicon wafer plants produce blank DVDs
with plant A manufacturing 45%, plant B manufacturing 30%, and plant C man-
ufacturing 25%. The probability of a defective DVD given plant A produced the
DVD is 0.01, the probability of a defective DVD given plant B produced the
DVD is 0.02, and the probability of a defective DVD given plant C produced
the DVD is 0.05. If a defective DVD was found, the probability that it was man-
ufactured by plant A is

P(A|D) = P(D|A)P(A)
P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

= 0.01 × 0.45
0.01 × 0.45 + 0.02 × 0.30 + 0.05 × 0.25

= 0.196.

Similarly, if a defective DVD was found, the probability that it was manufac-
tured by plant B is

P(B|D) = P(D|B)P(B)
P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

= 0.02 × 0.30
0.01 × 0.45 + 0.02 × 0.30 + 0.05 × 0.25

= 0.261.

Finally, for manufacturer C, the probability is

P(C|D) = P(D|C)P(C)
P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

= 0.05 × 0.25
0.01 × 0.45 + 0.02 × 0.30 + 0.05 × 0.25

= 0.543.

Thus, given a defective DVD is found, it was most likely produced by manufac-
turer C.

Example 1.21 Suppose that in Example 1.18, town T was hit by a tornado.
The probability that there were three tornadoes in town T ’s region during a
tornado season given that town T was hit by a tornado is

P(B3|A) = P(B3)P(A|B3)∑∞
i=0 P(A|Bi)P(Bi)

=

(
1 − 1

23

)
e−333

3!∑∞
i=0

(
1 − 1

2i

)
× e−33i

i!

= 0.196
0.777

= 0.252.
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Problems

1.4.1 Suppose that an urn contains 10 red marbles and 5 black marbles. If
two marbles are drawn from the urn at random and without replace-
ment, determine the probability that
a) a red marble is drawn on the second draw given a black marble was

drawn on the first draw.
b) a red marble is drawn on the second draw and a black marble was

drawn on the first draw.
c) a red marble is drawn on the second draw.
d) two marbles of different colors are selected.
e) two marbles of the same color are selected.

1.4.2 Suppose that an urn contains 12 red marbles, 8 white marbles, and 5
black marbles. If three marbles are drawn from the urn at random and
without replacement, determine the probability that
a) a white marble is drawn on the first draw, a red marble is drawn

on the second draw, and a white marble is drawn on the third
draw.

b) three marbles of the same color are selected.
c) a white marble is selected on the second draw.
d) a white marble is selected on the third draw.

1.4.3 Two marbles will be drawn at random and with replacement from an
urn having 8 red marbles and 12 black marbles. Determine
a) the number of possible outcomes in Ω.
b) the probability of drawing marbles of different colors.
c) the probability of drawing marbles of the same color.

1.4.4 Two marbles will be drawn at random and with replacement from
an urn having 8 red marbles, 4 black marbles, and 5 white marbles.
Determine
a) the number of possible outcomes in Ω.
b) the probability of drawing two white marbles.
c) the probability of drawing one white marble.
d) the probability of drawing marbles of different colors.
e) the probability of drawing marbles of the same color.

1.4.5 Suppose that two cards are drawn at random and without replacement
from a standard deck of 52 playing cards, determine the probability
that
a) an ace is drawn on the second draw given a king was selected on the

first draw.
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b) an ace is drawn on the second draw and a king was selected on the
first draw.

c) a club is drawn on the second draw.
d) cards of different colors are selected.

1.4.6 Suppose that urn A contains 5 red marbles and 10 black marbles and
urn B contains 8 red marbles and 4 black marbles. If a marble is drawn
at random from urn A and placed in urn B and then a marble is drawn
from urn B at random, determine the probability that
a) a black marble is drawn from urn A and a red marble is drawn from

urn B.
b) a red marble is drawn from urn B.
c) marbles of the same color are drawn from urns A and B.
d) marbles of the opposite colors are drawn from urns A and B.

1.4.7 Using the information in Example 1.19 with P(+|Dc) = p. Determine
the value of p so that P(D|+) = 0.75.

1.4.8 A computer company has two assembly locations with 84% of their
computers assembled in location A and 16% assembled in location B.
Given that a computer is assembled in location A, the probability that
a computer works perfectly is 0.98; given that a computer is assembled
in location B, the probability that the computer works perfectly is 0.92.
Determine the probability that
a) one of the computers supplied by this company works perfectly.
b) one of the computers supplied by this company was assembled in

location A, given that it works perfectly.

1.4.9 A university club holds dances at three different bars. The club uses bar
A 25% of the time, bar B 60% of the time, and bar C 15% of the time.
Suppose that the probability that a fight breaks out given that bar A
was used is 0.30, 0.10 given that bar B was used, and 0.50 given that
bar C was used. Determine
a) the probability that a fight breaks out a club dance.
b) the probability bar B was used given that a fight broke out.
c) the probability bar C was used given that a fight broke out.
d) the bar most likely to have been used given that a fight broke out.

1.4.10 Suppose that two cards are drawn at random and without replacement
from a standard deck of 52 playing cards, determine the probability
that
a) a king, queen, or a jack is selected on the second draw.
b) a king was selected on the first draw given a king, queen, or jack was

selected on the second draw.
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1.4.11 A fishing fleet has three different captains it uses with a particular ship
during salmon season. The fleet uses Captain I 65% of the time, Captain
II 25% of the time, and Captain III 10% of the time. Suppose that the
probability that the ship reaches its quota given that Captain I was used
is 0.72, 0.43 given that Captain II was used, and 0.83 given that Captain
III was used. Determine
a) the probability that the ship fulfills its quota.
b) the probability that Captain I was used given that the ship fulfills its

quota.
c) the probability Captain III was used given that the ship fulfills its

quota.
d) the captain most likely to have been used given the ship fulfills its

quota.

1.4.12 A gold mining company uses four different remediation techniques,
say R1, R2, R3, and R4. The company uses remediation technique R1
20% of the time, remediation technique R2 40% of the time, remedia-
tion technique R3 30% of the time, and remediation technique R4 10%
of the time. Suppose that the probability of a successful remediation
given that technique R1 was used is 0.5, 0.3 given that R2 was used 0.2,
given that technique R3 was used, and 0.25 given technique R4 was
used. Determine the probability
a) of a successful remediation.
b) remediation technique R2 was used given that the remediation was

successful.
c) remediation technique R1 or technique R3 was used given that the

remediation was successful.

1.4.13 In a small town, three lawyers (A, B, and C) serve as public defend-
ers. Court records indicate that lawyer A handles 40% of the cases,
lawyer B 30% of the cases, and lawyer C 30% of the cases. Further-
more, the probability that a defendant is acquitted given that lawyer A
handled the case is 0.25, 0.20 given that lawyer B handled the case, and
0.30 given that lawyer C handled the case. Determine the probability
that
a) a defendant using a public defender is acquitted.
b) lawyer B handled the case given that a defendant using a public

defender is acquitted.
c) lawyer C handled the case given that a defendant using a public

defender is acquitted.
d) lawyer A handled the case given that a defendant using a public

defender is acquitted.
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1.4.14 In Example 1.21, given a tornado hit town T , determine the most likely
number of tornadoes there were in town T ’s region. Hint: Determine
the largest value of P(Bi|A).

1.4.15 Prove: If P(A|B) > P(A), then P(B|A) > P(B).

1.4.16 Prove
a) Theorem 1.11 part (iv). b) Theorem 1.11 part (v).

1.5 Independence

In some cases, the conditional probability of an event A given that the event B is
the same as the unconditional probability of the event A. In this case, knowledge
of the event B occurring does not provide any information about the probability
that event A occurs, and the events A and B are said to be independent events.

Definition 1.13 Let (Ω,,P) be a probability space and let A,B ∈ . The
events A and B are said to be independent events if and only if any one of the
following three conditions is satisfied.

i) P(A ∩ B) = P(A)P(B).
ii) P(A|B) = P(A), provided P(B) > 0.

iii) P(B|A) = P(B), provided P(A) > 0.

Example 1.22 Suppose that a fair coin is flipped twice. Let A be the event
that a head is flipped on the first flip, and let B be the event that a tail is flipped
on the second flip. There are four equally likely outcomes in Ω and the event
A = {HT ,HH} and the event B = {TT ,HT}. Thus, P(A) = 1

2
, P(B) = 1

2
, and

since P(A ∩ B) = P({HT}) = 1
4
, it follows that A and B are independent events.

Note that in a chance experiment where n objects are drawn with replacement,
the outcome of each draw is independent of the outcome of any other draw;
however, this is not the case when the draws are made without replacement.

Theorem 1.15 shows that when A and B are independent events, then so are
the pairs of events A and Bc, Ac and B, and Ac and Bc.

Theorem 1.15 If A and B are independent events, then
i) Ac and B are independent.

ii) A and Bc are independent.
iii) Ac and Bc are independent.
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Proof . Let A and B be independent events.

i) Consider P(Ac ∩ B).

P(Ac ∩ B) = P(B) − P(A ∩ B) = P(B) − P(A)P(B)
= P(B) × [1 − P(A)] = P(B)P(Ac).

Thus, Ac and B are independent whenever A and B are independent.
ii) The proof of part (ii) is left as an exercise.

iii) The proof of part (iii) is left as an exercise.

The definition of independence can be generalized to a family of events, say
{Ai ∶ i ∈ ℕ}. For example, if every pair of events in  is a pair of indepen-
dent events, then the events in {Ai ∶ i ∈ ℕ} are called a pairwise independent
events. Definition 1.14 gives the definition of a family of mutually independent
events.

Definition 1.14 A family of events {Ai ∶ i ∈ ℕ} is said to be a family of
mutually independent events if and only if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all subsets J of ℕ.

Note that, in a family of mutually independent events, the probability of
the intersection of any subcollection of the family of events is the product
on the events in the subcollection. For example, three events A, B, and C are
mutually independent only when P(A ∩ B) = P(A)P(B),P(A ∩ C) = P(A)P(C),
P(B ∩ C) = P(B)P(C), and P(A ∩ B ∩ C) = P(A)P(B)P(C). Furthermore, it is
possible for a family to be a family of pairwise independent events but not a
family of mutually independent events as illustrated in Example 1.23.

Example 1.23 Flip a fair coin twice so that the four outcomes in Ω are equally
likely. Let A = {HH,HT},B = {HT ,TH}, and C = {HH,TH}. Then, P(A) =
P(B) = P(C) = 1

2
and

P(A ∩ B) = P({HT}) = 1
4
= P(A)P(B)

P(A ∩ C) = P({HH}) = 1
4
= P(A)P(C)

P(B ∩ C) = P({TH}) = 1
4
= P(B)P(C)
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but

P(A ∩ B ∩ C) = P(∅) = 0 ≠
1
8
= P(A)P(B)P(C).

Thus, A, B, and C are pairwise independent events but not mutually indepen-
dent events.

In chance experiments consisting of n trials where the outcome of each trial
is independent of the outcomes of the other trials, the outcomes of the trials
are mutually independent events. Moreover, the probability of a particular out-
come of the chance experiment is simply the product of the probabilities of the
corresponding trial outcomes.

Example 1.24 A basketball practice will end when a particular player makes
a shot from half court. If the outcome of each shot, hit (H) or miss (M), is inde-
pendent, and the probability that a half court shot will be made is 0.05, then the
probability that it will take five shots to end the practice is

P(M and M and M and M and H) = P(M)P(M)P(M)P(M)P(H)
= 0.954 × 0.05 = 0.041.

In general, the probability that it takes k shots to end the practice is 0.95k−1 ×
0.05.

Example 1.25 Suppose that two fair dice will be rolled repeatedly and inde-
pendently until a total of 6 or a total of 7 appears. To determine the probability
that a total of 6 is rolled before a total of 7 is rolled, let Ai be the event that the
first total of 6 is rolled before a total of 7 is rolled occurs on the ith roll. Then,
the collection of events {Ai} is a partition of the event that a 6 is rolled before
a 7 and

P(6 before 7) = P

( ∞⋃
i=1

Ai

) disjoint
⏞⏞⏞

=
∞∑

i=1
P(Ai).

Now, the event Ai occurs when the first i − 1 rolls result in totals that are not 6 or
7, and the ith roll is a total of 6. Thus, since the rolls of the dice are independent,

P(Ai) = P

( i−1⋂
i=1

(6 ∪ 7)c ∩ 6

) ind.
⏞⏞⏞

=
(25

36

)i−1
× 5

36
.

Hence,

P(6 before 7) =
∞∑

i=1
P(Ai) =

∞∑
i=1

(25
36

)i−1
× 5

36

= 5
36

∞∑
i=1

(25
36

)i−1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

geometric series

= 5
36

× 1
1 − 11

36

= 5
11

.
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Problems

1.5.1 Suppose that P(A) = 0.3, P(B) = 0.4, and A and B are independent
events. Determine
a) P(A ∪ B). b) P(A − B).
c) P(Ac ∪ Bc). d) P((A − B) ∪ (B − A)).

1.5.2 Two cards will be drawn at random and with replacement from a stan-
dard deck of playing cards. Determine the probability of drawing
a) two aces.
b) two cards of different suits.
c) two cards of the same suit.

1.5.3 Three geological exploration companies are searching independently
for new shale deposits in Eastern Montana. Suppose that the proba-
bility that company A finds new shale in Eastern Montana is 0.4, the
probability that company B finds new shale in Eastern Montana is 0.6,
and the probability that company C finds new shale in Eastern Mon-
tana is 0.5. Determine the probability that
a) exactly two companies find new shale deposits in Eastern Montana.
b) at least two of the companies find new shale deposits in Eastern

Montana.
c) at least one of the companies finds a new shale deposit in Eastern

Montana.

1.5.4 The goal of a military operation is to destroy a strategic target by firing
missiles at the target. The target will be destroyed when two missiles
have hit the target. Suppose that each missile is fired at the target inde-
pendently, and the probability that a missile hits the target is 0.6. If
missiles will be fired until the second missile hits the target, determine
a) the probability that only two missiles will have to be fired in order

to destroy the target.
b) the probability that four missiles will have to be fired in order to

destroy the target.
c) the probability that at most four missiles will have to be fired in

order to destroy the target.

1.5.5 Suppose that the probability of winning any money at all on a single
play of the Lucky Dollar poker machine is 0.14. If each play of the Lucky
Dollar poker machine is independent, determine the probability that
a) a player wins on five consecutive plays.
b) a player wins at least once in five consecutive plays.
c) a player’s first win occurs on the kth play.
d) a player’s first win occurs in 10 or fewer plays.
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1.5.6 A basketball practice will end when a player hits a shot from half court.
Suppose that each shot is independent of the others, and the probabil-
ity that a half court shot will be made is 0.05. Determine the probability
that it takes more than 20 shots to end practice.

1.5.7 Let A,B,C be mutually independent events. Show that
a) A and B ∩ C are independent events.
b) A and B ∪ C are independent events.
c) A and B − C are independent events.

1.5.8 Let Ω = {ABB,BAB,BBA,AAA} and suppose that the outcomes in Ω
are equally likely. Let Ai be the event that A occurs in the ith position
for i = 1, 2, 3. Show that A1, A2, and A3 are pairwise independent but
not mutually independent.

1.5.9 Suppose that P(A) = 0.25, P(B) = 0.3, and P(C) = 0.16. Determine
P(A ∪ B ∪ C) when A, B, and C are
a) disjoint events.
b) mutually independent events.

1.5.10 Suppose that a multiple-choice test has n questions and each ques-
tion has four possible choices. A student will guess at random on each
question making each guess independent of the others, and the proba-
bility of guessing the correct answer on any question is 0.25. Determine
the number of questions (n) that would have to be guessed so that the
probability of guessing the correct answer on at least one question is
at least 0.98.

1.5.11 An academic integrity committee consists of three members, two fac-
ulty representatives and one student representative. Suppose that each
of the committee members votes independently on each student appeal
case, and at least two committee members must agree with the student
appeal for the committee to rule in favor of the student. Furthermore,
based on the past records, the faculty rule in favor of a student appeal
with probability 0.10 and the student rules in favor with probability
0.3. Determine the probability that the committee rules in favor of a
student appeal.

1.5.12 Two fair dice will be rolled repeatedly and independently until a total
of 6 or a total of 5 appears. Determine the probability that a total of 6
is rolled before a total of 5 is rolled.
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1.5.13 Players A and B will alternate rolling a fair die independently until a
6 appears. The first player to roll a 6 wins the game. Determine the
probability that player A wins the game
a) when player A rolls first.
b) when player B rolls first.
c) when the players randomly chose who goes first.

1.5.14 If {Ai ∶ i ∈ ℕ} are mutually independent events, show that

P

( n⋃
i=1

Ai

)
= 1 −

n∏
i=1

[1 − P(Ai)].

1.5.15 Let A and B be independent events. Show that
a) A and Bc are independent events.
b) Ac and Bc are independent events.

1.5.16 If P(A) = 0, show that A is independent of every other event B of Ω.

1.5.17 Let A and B be events and let A be a subset of B. Show that A and B are
independent events when P(A) = 0 or P(B) = 0.

1.5.18 Let A and B be events, and let A be a nonempty subset of B with
P(A) > 0. If P(B) < 1, show that A and B cannot be independent
events.

1.6 Counting Methods

Probability computations often involve the enumeration of the possible out-
comes of a chance experiment, enumeration of the outcomes in an event, or
the enumeration of the ways an event can occur. The Fundamental Principal of
Counting, given in Theorem 1.16, is one of the most important tools for enu-
meration and can be used on chance experiments with or without equally likely
outcomes.

Theorem 1.16 (Fundamental Principle of Counting) Let a chance experi-
ment E be carried out by carrying out the subexperiments T1,T2,T3,… ,Tk. If
there are ni possible outcomes to subexperiment Ti, then the number of possible

outcomes for the chance experiment E is N(Ω) =
k∏

i=1
ni.
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Example 1.26 Suppose that a pizza parlor offers pizzas based on three dif-
ferent types of crusts, two different sauces, and 15 different toppings. Making
a three distinct topping pizza is based on five subexperiments, namely,
• T1 – choose the type of crust with n1 = 3,
• T2 – choose the type of sauce with n2 = 2,
• T3 – choose the first topping with n3 = 15,
• T4 – choose the second topping with n4 = 14 since one topping has already

been chosen,
• and T5 – choose the third topping with n5 = 13 since two toppings have

already been chosen.
Thus, the number of possible pizzas having three different toppings is

N(Ω) = 3 × 2 × 15 × 14 × 13 = 16 380.

Theorem 1.17 If a chance experiment consists of drawing n times
i) with replacement from N objects, then N(Ω) = Nn.

ii) without replacement from N objects, then
N(Ω) = N(N − 1) × · · · × (N − n + 1).

Proof . This theorem follows directly from the Fundamental Principle of
Counting.

Example 1.27 Suppose that a chance experiment involves rolling a fair
six-sided die five times. Since there are six possible outcomes to each roll,
N(Ω) = 65 = 7776.

Example 1.28 Suppose that a chance experiment involves selecting three
people at random and without replacement from a group of seven people
to serve as club president, vice president, and secretary. Then, N(Ω) =
7 × 6 × 5 = 210.

The Fundamental Principle of Counting can be very useful when computing
probabilities associated with a chance experiment having equally likely out-
comes. To use the Fundamental Principle of Counting to compute P(A) when
the chance experiment consists of several tasks and equally likely outcomes:
1) Define each of the k tasks involved in the chance experiment.
2) Determine the number of possible outcomes to task Tk , say nk .
3) N(Ω) =

∏n
i=1 ni.

4) Determine the number of favorable outcomes to task Tk , say fk .
5) N(A) =

∏n
i=1 fi.

6) P(A) = N(A)
N(Ω)

.
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Example 1.29 Suppose that a standard state license plate is made of three
letters selected from {A,B,C,… ,Z} followed by three digits selected from
{0, 1, 2,… , 9}. Then, the number of possible distinct license plates that can be
made is N(Ω) = 26 × 26 × 26 × 10 × 10 × 10 = 17 576 000.

Now, if a license plate is selected at random, the probability that a license
plate will have three different letters is

P(three different letters) = N(three different letters)
N(Ω)

= 26 × 25 × 24 × 10 × 10 × 10
17 576 000

= 15 600 000
17 576 000

= 0.888.

The probability that all three letters on a license plate match while none of the
digits on a license plate match is

26 × 1 × 1 × 10 × 9 × 8
17 576 000

= 18 720
17 576 000

= 0.0011.

The two most important considerations when computing probabilities in
a chance experiment that involves sampling from N distinct objects are (i)
whether or not the sampling is with replacement and (ii) whether or not
the order in which the objects are sampled is important. For example, when
dealing five cards without replacement to form a hand of cards, the order
in which the five cards are dealt does not matter; that is, a hand of cards
consisting of AH,KS, 5D, 4C, and 2C is the same hand, no matter in which
order the cards were dealt. On the other hand, the order in which the objects
are selected may be important such as in the case where nine digits are chosen
to form a social security number.

Definition 1.15 A permutation of n distinct objects is an ordered sequence
of the n objects. A partial permutation of size r is an ordered sequence of r of
the n objects.

For example, abc and bca are two different permutations of the letters a, b,
and c, and ab and cb are different partial permutations of size 2 made from the
letters a, b, and c.

Theorem 1.18 The number of partial permutations of size r made from n dis-
tinct objects when sampling without replacement is n!

(n − r)!
.

Proof . This theorem follows directly from the Fundamental Principle of
Counting.
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Example 1.30 There are 12!
(12 − 4)!

= 11 880 partial permutations of size
4 when sampling with replacement from 12 distinct objects, and there are
12! = 479 001 600 permutations of all 12 objects.

Example 1.31 Five couples are arranged in a row of 10 chairs. Let A be the
event that five couples are seated in a fashion so that a husband is seated next to
his wife. Now, the number of ways to seat 10 people in the 10 chairs is N(Ω) =
10! = 3 628 800, and the event A comprised the following six tasks:

• T1 – Choose the order in which the 5 couples will be seated. n1 = 5! = 120.
• T2 – Seat the first couple. n2 = 2.
• T3 – Seat the second couple. n2 = 2.
• T4 – Seat the third couple. n2 = 2.
• T5 – Seat the fourth couple. n2 = 2.
• T6 – Seat the fifth couple. n2 = 2.

Thus, N(A) = 5! × 25 = 3840. Hence, P(A) = 3840
3 628 800

= 0.0011.

When sampling without replacement, and the order the objects are selected is
not important, the objects selected are called a combination.

Definition 1.16 A combination of size r is an unordered subset of r distinct
objects selected from a set of n distinct objects.

For example, abc and cab are the same combination of the letters a,
b, and c. The four combinations of size 3 for the letters a, b, c, and d are
abc, abd, acd, bcd.

Theorem 1.19 The number of combinations of size r that can be formed
by selecting r objects without replacement from n distinct objects is(n

r

)
= n!

r!(n − r)!
.

Proof . The proof of Theorem 1.19 is left as an exercise.

Note that
(

n
k

)
is the kth term in the nth row of Pascal’s Triangle, and(

n
k

)
is also the kth coefficient in the binomial expansion of (x + y)n =∑n

k=0

(
n
k

)
xkyn−k .

Example 1.32 The number of possible five-card poker hands that can be dealt
from a standard deck of 52 playing cards is

(
52
5

)
= 2 598 960. Let A be the event
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a five-card hand contains four aces. Then, A is comprised of two tasks T1 – deal
all four aces from the four aces in the deck to the hand and T2 – deal the fifth
card from the remaining 48 cards in the deck to the hand. Thus,

P(A) =

(
4
4

)(
48
1

)
(

52
5

) = 1 ⋅ 48
2 598 960

= 0.000 018.

The number of combinations of size r can also be used to count the number
of ways n objects can be assigned to two cells with one cell receiving r objects
and the other cell n − r objects.

Example 1.33 The number of possible equally likely outcomes when a fair
coin is flipped 20 times is 220 = 1 048 576. The number of outcomes resulting in
12 heads and eight tails is

(
20
12

)
= 125 970, and thus, the probability of flipping

12 heads when a fair coin is flipped 20 times is 125 970
1 048 576

= 0.12.

Example 1.34 A state lottery generally consists of selecting six numbers from
1 to n without replacement, and the order of selection is unimportant. A lottery
player will select their own six numbers from 1 to n, and then the state will
pick the six winning lottery numbers without replacement. Because order is
unimportant, the number of possible lottery combinations is

(
n
6

)
. For example,

when n = 51, there are
(

51
6

)
= 18 009 460 possible lottery combinations.

A player will usually win prize money for matching three, four, five, or six of
the state’s numbers. Now, for a player to match x of the winning numbers, x of
the player’s numbers must be match the six winning numbers and 6 − x of the
player’s numbers must match the 45 numbers that were not chosen. Thus, the
probability that a player will match x of the state’s six numbers is

P(x matched numbers) =

(
6
x

)(
n−6
6−x

)
(

n
6

) .

With n = 51 and x = 3, the probability that a player matches 3 of the winning

numbers is

(
6
3

)(
45
3

)
(

45
6

) = 0.0158.

Theorem 1.20 generalizes the number of ways n distinct objects can be assigned
to more than two cells.
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Theorem 1.20 The number of ways n distinct objects can be distributed into k
distinct cells is

n!
n1!n2! · · · nk!

=
(

n
n1, n2, n3,… , nk

)
,

where ni ≥ 0 for i = 1, 2, 3,… , k and
∑k

i=1 ni = n.

Example 1.35 The number of ways that a standard deck of 52 playing cards
can be dealt so that each player receives 13 cards is

(
52

13,13,13,13

)
= 52!

13!4 . Let A be
the event that one of the four players is dealt all four aces. Then, A is comprised
the tasks T1 – choose one of the players to receive the four aces, T2 – distribute
the four aces to the player, and T3 – distribute the remaining 48 cards so that
each player has been dealt 13 cards. Thus,

P(A) = N(A)
N(Ω)

=

(
4
1

)(
4
4

)(
48

9, 13, 13, 13

)
(

52
13, 13, 13, 13

) = 0.0106.

Counting methods can also be useful for enumerating the possible outcomes
in chance experiments where the outcomes are not equally likely.

Example 1.36 Suppose that a multiple-choice test consists of 10 questions,
with each question having four options of which only one option is the correct
answer. If a student guesses at random on each question, then the probability
that a student guesses correctly on any particular question is 1

4
. If a student

guesses independently on each of the questions, the probability of answering
seven questions correctly is(10

7

)(1
4

)7(3
4

)3
= 0.0031

since (1) the probability of any sequence of seven correct answers and three
incorrect answers is

(
1
4

)7( 3
4

)3
and (2) there are

(
10
7

)
ways to assign the 10

questions to seven correct answers and three incorrect answers.

Problems

1.6.1 Phone numbers in a particular state begin with one of three area
codes, followed by one of seven prefixes and finally four digits (i.e.
xxx-xxx-xxxx). Determine how many possible distinct phone numbers
are possible
a) without further restriction.
b) if a phone number must begin with the prefix 491.
c) if the last four digits cannot be 0000.
d) if the last three digits must be 000.
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1.6.2 A particular state’s license plates have the form LCCDDDD, where L is
either an A for auto or a T for truck, CC is one of 56 county identifiers,
and D is a digit. Determine how many distinct license plates there are
a) for automobiles.
b) for a particular county.
c) with no repeated digits.
d) where the product of the digits is even.

1.6.3 A pizza parlor makes pizzas with three different types of crusts, two
types of sauces, 10 different toppings, and all pizzas come with cheese.
Determine the number of distinct types of
a) one-topping pizzas that can be made.
b) two-topping pizzas that can be made.
c) pizzas that can be made.

1.6.4 Suppose that a club consists of six men and three women. From the
nine club members, three members will be selected at random and
without replacement to serve as club officers. If, the first member
selected will serve as President, the second as Vice President, and the
third as Treasurer, determine
a) the number of possible outcomes for selecting this club’s officers.
b) the probability that all of the club’s officers are female.
c) the probability that the club’s president is female.

1.6.5 Three numbers are chosen at random and without replacement from
a pool of 15 numbers consisting of 0, six positive numbers, and eight
negative numbers. Determine the probability that
a) no negative numbers are chosen.
b) at least one negative number is chosen.
c) the product is positive.
d) the product is nonnegative.
e) the product is 0.
f ) the product is negative.

1.6.6 A bridge hand consists of dealing 52 playing cards to four players such
that each player receives 13 cards. Determine the probability that
a) each player has one ace.
b) one player has all four aces and all four kings.

1.6.7 From a standard deck of 52 playing cards, five cards are dealt at random
and without replacement to four players so that each player receives
five cards and 32 are left undealt.
a) How many possible ways are there to deal the four hands?
b) What is the probability that each player is dealt one ace?
c) What is the probability that one player receives all four aces?
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1.6.8 A company has 25 trucks of which 20 are in working order and 5 are in
the shop for repair. If four trucks are selected at random and without
replacement, determine the probability that
a) all four of the selected trucks are in working order.
b) all four of the selected trucks are in the shop for repair.
c) at least one of the selected trucks is in working order.
d) at least two of the selected trucks are in working order.

1.6.9 A wardrobe consists of five pairs of pants of which three pairs are blue,
12 shirts of which 4 are white, seven pairs of socks, and black, brown,
and tan shoes. Determine the number of distinct ensembles (i.e. pants,
shirt, socks, and shoes) possible
a) with no restrictions.
b) with blue pants.
c) with blue pants, a white shirt, and black or brown shoes.

1.6.10 Suppose that four cards are drawn at random and without replacement
from a standard deck of 52 playing cards. Determine the probability
that
a) two aces are drawn.
b) two hearts are drawn.
c) at least one ace is drawn.
d) one ace and one king are drawn.

1.6.11 Suppose that four digits are to be selected at random with replacement.
Determine the probability that
a) the product is even.
b) the product is odd.
c) the sum is even.
d) the product is positive.

1.6.12 Suppose that five male/female couples are to be seated in a row of
chairs. Determine the probability that
a) the seating arrangement alternates MFMFMFMFMF.
b) the seating arrangement is MMMMMFFFFF.
c) no couple is seated together.

1.6.13 For the state lottery given in Example 1.34 with n = 51, compute the
probability of matching
a) 0 numbers. b) 1 number.
c) at least 3 numbers. d) at most 1 number.
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1.6.14 For the state lottery given in Example 1.34 with n = 56, compute the
probability of matching
a) 3 numbers. b) 4 numbers.
c) 5 numbers. d) at least 3 numbers.

1.6.15 Prove Theorem 1.19.

1.6.16 Using the binomial expansion of (1 + 1)n, show that
∑n

k=0

(
n
k

)
= 2n.

1.6.17 Show that

a)
(

n
k

)
=
(

n
n−k

)
. b)

(
n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)
.

1.6.18 Show that
(

n
n1,n2…,nk

)
=
(

n
n1

)(
n−n1

n2

)
· · ·

(
n−n1−n2−···−nk−1

nk

)
where∑k

i=1 nk = n.

1.6.19 Evaluate the following sums:

a)
n∑

k=0

(n
k

)
(−1)k .

b)
n∑

k=0

(n
k

)
2k .

c)
n∑

k=0

(n
k

)
(𝛼 − 1)k .

1.6.20 Show that
∑k

j=0

(
n
j

)(
m

k−j

)
=
(

n+m
k

)
for n,m, k ∈ ℕ. Hint: Consider

the binomial expansion of (x + 1)n+m.

1.7 Case Study – The Birthday Problem

A famous probability problem posed sometime in the twentieth century is
called the Birthday Problem. The Birthday Problem deals with the probability
of people sharing common birthdays, which turns out to be a fairly common
coincidence.

Statement of the Birthday Problem: What is the probability that two or more
people in a room of n randomly assembled people share a common birthday?

The solution to the Birthday Problem depends on the assumptions being
made on the assumed probability model, and different models will yield differ-
ent solutions. The probability model being used to solve the Birthday Problem
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here is one of the simplest models possible; more complicated models may yield
a more accurate probability for the solution to the Birthday Problem, but they
are seldom used.

The Assumptions of the Probability Model:

• Because the people in the room are randomly assembled, assume that the
birthdays of the individuals in the room are independent events.

• Because leap-year birthdays (i.e. February 29) are rare, assume that the birth-
days all occur in nonleap years, leaving 365 possible birthdays.

• Assume that birthdays are uniformly distributed over the 365 possible birth-
days so that each of the 365 birthdays is equally likely.

With these assumptions, the birthday problem is reduced to a repeated sam-
pling problem where the chance experiment consists of choosing n birthdays
with replacement from the 365 possible birthdays. Thus, under this model,
N(Ω) = 365n.

Let A be the event that two or more people share the same birthday. While
simple in statement, the event A is actually a fairly complex event. For example,
a small sampling of the possible outcomes in A includes that only two people
share the same birthday, three people share the same birthday, two people share
the same birthday and another two share a different birthday, all but one person
in the room share the same birthday, and all n people share the same birthday.
To compute the probability of A directly, one would need to determine all of the
possible ways at least two people in a room of n people share the same birthday
and then sum the probabilities of these outcomes.

On the other hand, complementary event Ac is the event that no one in the
room shares a common birthday. Because P(Ac) is easier to compute, the prob-
ability of A will be found using the complement rule, P(A) = 1 − P(Ac).

Now, the number of ways none of the individuals in the room share a common
birthday can be modeled as sampling n birthdays without replacement from the
365 possible birthdays. In other words, the first person can have any of the 365
possible birthdays, the second person can have any of the 364 remaining birth-
days, and so on, until the last person can have any of the 365 − n + 1 remaining
birthdays. Thus,

N(Ac) = 365 × 364 × 363 × · · · × (365 − n + 1)

and

P(Ac) = 365 × 364 × 363 × · · · × (365 − n + 1)
365n .

Finally, the probability that two or more people in a room of n randomly
assembled people share a common birthday is
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P(A) = 1 − P(Ac) = 1 − 365 × 364 × 363 × · · · × (365 − n + 1)
365n

= 1 −
365!

(365−n)!

365n .

For example, for n = 10, the probability that two or more people in a room of
10 randomly assigned people share a common birthday is

P(A) = 1 − 365 × 364 × 363 × · · · × 356
36510 = 0.1169,

and for n = 23, P(A) = 1 − 365×364×363×···×344
36522 = 0.5073. Thus, there is better than

a 50% chance that at least two people in a room of 23 randomly assembled
people will share a common birthday.

The probability of two or more people in a room of n randomly assem-
bled people sharing the same birthday plotted as a function of n is shown
in Figure 1.1. Note that the probability at least two people in a room of n
randomly assembled people will share a common birthday is greater than 0.90
when n ≥ 41.

Finally, other probability models could have been used for modeling the prob-
ability that two or more people in a room of n randomly assembled people share
a common birthday. For example, a probability model that includes February 29
as possible birthday could be considered; however, in this model, it would not
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n = 41, P(A) = 0.903

Figure 1.1 A plot of P(A) for n = 2, 3,… , 75.
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be reasonable to assume that the 366 birthdays are equally likely. An alternative
probability model could also be built using unequal empirical probabilities for
each of the possible birthdays.

Problems

1.7.1 Determine the probability that in a room of 40 people, at least two
people share the same birthday.

1.7.2 Determine the probability that in a room of 50 people, at least two
people share the same birthday.

1.7.3 Using a probability model analogous to the one used in solving the
Birthday Problem, determine the probability that two or more people
in a room of n randomly assembled people have a birthday in the same
week
a) assuming that there are 52 equally likely weeks in a year.
b) assuming that there are 52 equally likely weeks in a year and n = 10.
c) assuming that there are 52 equally likely weeks in a year and n = 15.
d) assuming that there are 52 equally likely weeks in a year and n = 25.

1.7.4 Using the setting of Problem 1.7.3, determine the value of n so that the
probability that two or more people in a room of n randomly assembled
people have a birthday in the same week is at least 0.50.

1.7.5 Suppose that the last two digits of a car license plate are numerical with
possible values 00, 01, 02,… , 99. Determine the probability that at least
two cars in a parking lot of
a) n randomly assembled cars have the same last two digits.
b) 10 randomly assembled cars have the same last two digits.
c) 20 randomly assembled cars have the same last two digits.

1.7.6 Using the setting of Problem 1.7.5, determine the value of n so that the
probability that two or more cars in a parking lot of n randomly assem-
bled cars have the same last two digits is at least 0.75.


