Technical Report No. 61

Steam In Place

www.pda.org/bookstore

Authors		
Kevin Trupp (Task Force Chair), Retired	Leesa D. McBurnie, Meissner Filtration Products, Inc.	
Dave Adams, Baxter Healthcare Corporation	Lance L. Morien, Centocor-Global Biologics Supply Chain	
Keith E. Bader, Hyde Engineering and Consulting	Michael P. Mulcare, Biogen Idec	
Michael N. Blackton, ImClone Systems, Inc.	Anton Ponomarenko, Bayer Healthcare	
Keith A. Bowen, Centocor, Inc.	Tony Van Hoose, Sanofi Pasteur	
Garth Corkill, Pall Life Sciences	Edward K. White, Baxter Healthcare Corporation	
Tim P. Cirbo, Eli Lilly and Company	Randy Wilkins, Millipore Corporation	
Jose A. Goin, Ph.D., Genentech		

PDA Technical Report No. 61: Steam in Place Task Force Members

Contributors

Martin Kern, Hermes Pharma Victor G. Maqueda, Sr. (no company affiliation) Keith Shuttleworth, Keith Shuttleworth & Associates Nigel Wood, GlaxoSmithKline

The Steam in Place Task Force would like to dedicate this technical report in memory of Lance Morien.

The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Task Force and are not necessarily views of the organizations they represent.

Steam In Place

Technical Report No. 61

ISBN: 978-0-939459-53-7 © 2013 Parenteral Drug Association, Inc. All rights reserved.

www.pda.org/bookstore

Table of Contents

1.0	INTRODUCTION1	
	1.1 Scope	
2.0	GLOSSARY OF TERMS 3	
3.0	STEAM IN PLACE SCIENCE AND TECHNOLOGY 7	
0.0	3.1 SIP Applications	
	3.2 Mechanisms of Lethality	
4.0	SYSTEM DESIGN 11	
	4.1 Planning for Design of SIP Cycle	
	4.2 Equipment Design Considerations	
	4.3 SIP System Control and Monitoring	
	4.3.1 Automation	
	4.3.2 Controlling the SIP Cycle17	
	4.3.3 SIP for Portable Vessels	
	4.3.4 Semi-Manual and Manual SIP Operations 18	
50	CYCLE DEVELOPMENT CONSIDERATIONS 19	
0.0	5.1 Use of Risk Management during Development20	
	5.1.1 Risk Assessment	
	5.1.1 Nisk Assessment	
	5.1.2 Nisk Willgation	
	5.1.4 Testing	
	5.2 Cycle Parameter Determination	
	5.3 Filter Cycle Development Considerations24	
	5.3.1 Wet Filters	
	5.3.2 Filter Integrity Tests	
	5.4 Temperature Mapping	
6 0	PERFORMANCE QUALIFICATION	
0.0		
	6.1 Use of Risk Management during Qualification 26	
	6.1.1 System/Equipment Qualification	
	6.1.2 Cycle Qualification	
	6.2 Physical Qualification	
	6.2.1 Sanitization vs. Sterilization	
	6.2.2 Temperature Mapping	
	6.3 Biological Qualification	
	6.3.1 Microbial Challenge	
	Biological Indicators	
	6.4 Qualification Acceptance Criteria	
	6.5 Validation Approaches	
	6.5.1 Family Validation	
	6.5.2 Matrix Validation	

7.0 ONGOING PROCESS CONTROL	37
7.1 Use of Risk Management for Ongoing	
Process Control	
7.2 Routine Monitoring	
7.2.1 Operational Parameters	
7.2.2 Filter Testing	
7.3 Change Control/Revalidation	
7.4 Periodic Requalification/Revalidation	
7.5 Preventative Maintenance Strategy	
7.6 Calibration Strategy	. 39
8.0 APPENDICES	40
8.1 Appendix A: Risk Assessment of	
Steam in Place Processes	. 40
8.1.1 Introduction	. 40
8.2 Risk Assessment Tools	. 40
8.2.1 Hazard Analysis and Critical Control Poin	
(HACCP)	. 40
8.2.2 Failure Mode and Effects Analysis	4.4
(FMEA)	
8.3 Example of HACCP for a New SIP Process	. 4Z
8.4 Example of FMEA for a Steam in Place Process	15
8.4.1 Risk analysis	
8.4.2 Risk Evaluation	
8.4.3 Risk Assessment	
8.4.4 Risk Reduction/Post-mitigation RPR	
8.5 Appendix B: Lyophilizer SIP Design	. 10
and Cycle Considerations	. 47
8.5.1 Lyophilizer Chamber, Shelves, and Ram	
8.5.2 Lyophilizer Condenser	
8.5.3 Heating and Cooling System	. 48
8.5.4 Chamber Vacuum Pumps	. 48
8.5.5 Vent and Compressed Gas Filters	
8.5.6 Clean-in-Place (CIP) Spray Devices	. 48
8.5.7 Chamber Isolation Valve	
8.5.8 Post-sterilization Leak Test	
8.5.9 Cycle Considerations for Lyophilizers	
8.5.10 Pre-SIP Phases for Lyophilizers	
8.5.11 Typical SIP Phases for Lyophilizers	. 50
8.5.12 Validation Considerations for	
Steam in Place	. 50
9.0 REFERENCES	52

FIGURES AND TABLES INDEX

Figure 1.1-1	Steam in Place Life Cycle2
Table 3.1-1	Includes some example applications of SIP processes, cycle development considerations, and potential validation approaches7
Figure 3.2-1	Microbial Survivor Curve9
Table 3.2-1	Example Lethality Rates (F ₀ per Minute) at Various Process Temperatures9
Figure 3.2-2	Optimal Heat Transfer Curve
Figure 3.2-3	Effect of Trapped Air on Steam Temperature10
Figure 4.2-1	Example of Steam Distribution and Process Tank Layout12
Table 4.2-1	Comparison of Pros and Cons for When to Perform the Pre-Use Filter Integrity Test . 14
Table 4.2-2	Temperature Reduction Caused by Air15
Table 4.2-3	An example of considerations for steam trap selection16
Table 4.3-1	Examples of Levels of Automation 17
Table 5.0-1	Typical Steps and Phases of an SIP Cycle with Relevant Objectives 19
Figure 5.0-1	Example of SIP Cycle Phases

Table 5.2-1	Example of Typical SIP Cycle Operational Parameters
Figure 5.3.2-1	Example of In Situ Filter Integrity Test 25
Figure 6.2.2-1	Example of Probe Orientation
Figure 6.2.2-2	TC 1 vs. TC 2 Temperature Profile 29
Table 6.3.2-1	Types of Biological Indicators
Figure 6.3.2-1	Example of BI Placement
Figure 6.3.2-2	Example of Pipe with BIs and TC Connection Gland34
Figure 6.3.2-3	Example of pipe with BIs with Ported Gasket
Figure 8.2-1	Critical Control Point Decision Tree 41
Table 8.2.2–1	Risk Ranking Assignment Chart 42
Figure 8.3-1	Manufacturing Process Flow Diagram Depicting Stages of HACCP Analysis 43
Table 8.3-1	HACCP Analysis Table 44
Table 8.4.2-1	Risk Prioritization Ranking Chart 45
Figure 8.4.3-1	Example of Bioreactor Vessel System 46
Table 8.4.4-1	Assessment of Manufacturing SIP Process
Figure 8.5-1	Simplified Schematic of a Lyophilizer and Condenser

1.0 Introduction

PDA Technical Report No. 1, Validation of Moist Heat Sterilization Processes: Cycle Design, Development, Qualification and Ongoing Control, updated in 2007, focuses on the microbiology and engineering concepts of moist heat sterilization and the general approach to sterilization science in batch sterilizers (autoclaves) (1). This technical report is intended to complement PDA Technical Report No. 1 and will focus on steam in place (SIP) processes.

The primary objective of the task force responsible for this technical report was to develop a scientific technical report on SIP processes that provides recommendations for use by industry and regulators. References to appropriate and up-to-date scientific publications, international regulatory documents, journal articles, technical papers, and books are used to provide more detail and supportive data can be found.

Steam in Place was chosen as the title because this document focuses on the various applications of steam for in situ sterilization for "sterile" applications and for in situ sanitization and other bioburden control applications widely used for systems that do not claim to be "sterilized" via steam. We also differentiate "steam in place" from the more generic term "sterilize in place" used to describe in situ sterilization using various types of gaseous or liquid sterilizing agents including steam (1).

The task force was composed of European, North American, and South American industry professionals to ensure the methods, terminology, and practices of SIP reflect sound science and can be applied globally. This technical report was disseminated for public review and comment prior to publication, to provide the widest possible review and ensure its suitability as a guide to industry.

SIP is often a pivotal step of aseptic processing for sterile product manufacture, and as such, may benefit from the application of risk management methodologies. The characterization, evaluation, and assessment of risk are useful to direct overall efforts for cycle development and subsequent validation. After development of a risk assessment, more resources can be focused on mitigating risk for systems, equipment, or processes that have the highest potential for product contamination. The management of risk may be employed throughout the lifecycle of SIP equipment and processes to efficiently focus and allocate resources commensurate with the probability of impacting final product purity and safety. Descriptions of the specific steps and tools for risk management are available from a variety of sources (2,3).

1.1 Scope

The scope of this technical report is limited to discussion of SIP processes that provide moist heat sterilization and/or sanitization of equipment and systems supporting the manufacture of medicinal products. The principles discussed in this report may also be applied to those systems where portable equipment is steamed at a fixed station (steam out of place).

Application of the concepts presented in this technical report to laboratories or other non-CGMP applications, including hospitals, is not intended.

The following concepts are out of scope:

- Clean-in-Place (except where related to SIP)
- In situ media sterilization
- Product Sterilization
- Design and qualification of utilities

1